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1 Introduction

The 2020 college football season, for most fans, will be one to forget. The season started
unevenly for most teams, schedules were shortened, non-conference games were rare, few fans
saw their team play in person, all because of the COVID-19 global pandemic.

For the Nebraska Cornhuskers, it was doubly forgettable. Year three of Scott Frost turned
out to be another dud, with the team going 3-5. A common refrain from the coaching staff
throughout the season, often after disappointing losses, was this: The team is close to turning
a corner.

How close?

This is where modeling comes in in sports. Using modeling, we can determine what we should
expect given certain inputs. To look at Nebraska’s season, let’s build a model of the season
using three inputs based on narratives around the season: The offense struggled to score, the
offense really struggled with turnovers, and the defense improved.

The specifics of how to do this will be the subject of this whole book, so we’re going to focus
on a simple explanation here.

First, we’re going to create a measure of offensive efficiency – points per yard of offense. So
if you roll up 500 yards of offense but only score 21 points, you’ll score .042 points per yard.
A team that gains 250 yards and scores 21 points is more efficient: they score .084 points per
yard. So in this model, efficient teams are good.

Second, we’ll do the same for the defense, using yards allowed and the opponent’s score. Here,
it’s inverted: Defenses that keep points off the board are good.

Third, we’ll use turnover margin. Teams that give the ball away are bad, teams that take the
ball away are good, and you want to take it away more than you give it away.

Using logistic regression and these statistics, our model predicts that Nebraska is actually
worse than they were: the Husker’s should have been 2-6. Giving the ball away three times
and only scoring 28 points against Rutgers should have doomed the team to a bad loss at the
end of the season. But, it didn’t.

So how much of a corner would the team need to turn?

With modeling, we can figure this out.
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What would Nebraska’s record if they had a +1 turnover margin and improves offensive
production 10 percent?

As played, our model gave Nebraska a 32 percent chance of beating Minnesota. If Nebraska
were to have a +1 turnover margin, instead of the -2 that really happened, that jumps to a 40
percent chance. If Nebraska were to improve their offense just 10 percent – score a touchdown
every 100 yards of offense – Nebraska wins the game. Nebraska wins, they’re 4-4 on the season
(and they still don’t beat Iowa).

So how close are they to turning the corner? That close.

1.1 Requirements and Conventions

This book is all in the R statistical language. To follow along, you’ll do the following:

1. Install the R language on your computer. Go to the R Project website, click download
R and select a mirror closest to your location. Then download the version for your
computer.

2. Install R Studio Desktop. The free version is great.

Going forward, you’ll see passages like this:

install.packages("tidyverse")

Don’t do it now, but that is code that you’ll need to run in your R Studio. When you see that,
you’ll know what to do.

1.2 About this book

This book is the collection of class materials for the author’s Advanced Sports Data Analysis
class at the University of Nebraska-Lincoln’s College of Journalism and Mass Communications.
There’s some things you should know about it:

• It is free for students.
• The topics will remain the same but the text is going to be constantly tinkered with.
• What is the work of the author is copyright Matt Waite 2023.
• The text is Attribution-NonCommercial-ShareAlike 4.0 International Creative Commons

licensed. That means you can share it and change it, but only if you share your changes
with the same license and it cannot be used for commercial purposes. I’m not making
money on this so you can’t either.
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2 Installations

You’re going to do things most of you aren’t used to doing with your computer in this class.
In order to do that, you need to clean up your computer. I’ve seen what your computer looks
like. It’s disgusting.

2.0.1 Part 1: Update and patch your operating system

On a Mac:

1. Open System Preferences.

Depending on how old your Mac OS is, you might see this:
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Or you might see this:
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2. Check and see if you have the latest version of the Mac OS installed. If your computer
says “Your Mac is up to date”, then you’re good to go, regardless of what comes next.

3. If you aren’t on Sonoma and you can update to it, you should do it. This will take some
time – hours, so don’t do it when you need your laptop – but it’s important for you and
your computer to stay up to date on operating systems.

4. When you’re done, make sure you click the Automatically keep my Mac up to date
box and install those updates regularly. Don’t ignore them. Don’t snooze them.
Install them.

5. With an up-to-date operating system, now install the command line tools. To do this,
click on the magnifying glass in the top right of the screen and type terminal. Hit enter
– the first entry is the terminal app.

6. In the terminal app, type xcode-select --install and hit enter. Let it run.
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On Windows:

1. Type Updates into the Cortana search then click Check for updates
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2. After the search for updates completes, apply any that you have. Depending on if you’d
done this recently or if you have automatic updates set, this might take a long time or
go very quickly.
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3. When you’re done, make sure you set up automatic updates for your Windows machine
and install those updates regularly. Don’t ignore them. Don’t snooze them. Install
them.

2.0.2 Part 2: Install R and R Studio

1. Go here. Go to Step 1 and click Download and Install R

• If you’re on a Mac, click on Download R for MacOS. If you have a newer Mac with
an M1/M2/M3 chip, you want the arm64 version. If you’re on an older Mac with
an Intel chip, you want the X86_64 version.

• If you’re on Windows, install the base package AND install Rtools. When either
downloads, run the executable and accept the defaults and license agreement.
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2. Go back to here. Go to Step 2 and click R Studio Desktop for your version.

Mac users:

Figure 2.1: Make sure you drag the R Studio icon into the Applications folder icon.

Windows users:

You can find it by typing RStudio into the Cortana search.
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2.0.3 Part 3: Installing R libraries

1. Open R Studio. It should show the Console view by default. We’ll talk a lot more about
the console later.

2. Copy and paste this into the console and hit enter:

install.packages(c("tidyverse", "rmarkdown", "lubridate", "janitor", "cowplot",
"learnr", "remotes", "devtools", "hoopr", "nflfastR", "cfbfastR", "rvest",
"Hmisc", "cluster", "tidymodels", "bonsai", "lightgbm", "ranger", "xgboost",
"kernlab", "corrr", "zoo"))
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2.0.4 Part 4: Install Slack

1. Install Slack on your computer and your phone (you can find Slack in whatever app
store you use). The reason I want it on both is because you are going to ask me for help
with code via Slack. Do not use screenshots unless specifically asked. I want you
to copy and paste your code. You can’t do that on a phone. So you need the desktop
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version. But I can usually solve your problem within a few minutes if you respond right
away, and I know that you have your phone on you and are checking it. So the desktop
version is for work, the phone version is for notifications.

2. Email me the address you want connected to Slack. Use one you’ll actually check.
3. When you get the Slack invitation email, log in to the class slack via the apps, not the

website.
4. Add the #r channel for general help I’ll send to everyone in the channel and, if you want,

the #jobstuff channel for news about jobs I come across.

2.0.5 Part 5: Install the tutorials

To get the tutorials, do the following.
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1. Open R Studio.

2. R Studio defaults to the console view. This is good, This is where you want to

be.

3. In the console, enter the following:

devtools::install_github("mattwaite/SportsDataTutorials", force=TRUE)
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4. You should see some automated output. If you are told there are newer libraries and asked
if you want to install them, just hit enter. When it is done, quit R Studio and restart it.

This is what it will look like when done.

5. Now do this:

devtools::install_github("mattwaite/AdvancedSportsDataTutorials")

6. Restart R Studio. You should now see both the Sports Data Tutorials and the Advanced
Sports Data Tutorials in the tutorial pane.
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3 Modeling and logistic regression

3.1 The basics

One of the most common – and seemingly least rigorous – parts of sports journalism is the
prediction. There are no shortage of people making predictions about who will win a game or
a league. Sure they have a method – looking at how a team is playing, looking at the players,
consulting their gut – but rarely ever do you hear of a sports pundit using a model.

We’re going to change that. Throughout this class, you’ll learn how to use modeling to make
predictions. Some of these methods will predict numeric values (like how many points will a
team score based on certain inputs). Some will predict categorical values (W or L, Yes or No,
All Star or Not).

There are lots of problems in the world where the answer is not a number but a classification:
Did they win or lose? Did the player get drafted or no? Is this player a flight risk to transfer
or not?

These are problems of classification and there are algorithms we can use to estimate the
probability that X will be the outcome. How likely is it that this team with these stats will
win this game?

Where this gets interesting is in the middle.

library(tidyverse)
library(tidymodels)
library(hoopR)
library(zoo)
library(gt)
set.seed(1234)

What we need to do here is get both sides of the game. We’ll start with getting the box scores
and then we’re going to remove all games involving non-Division I schools.

games <- load_mbb_team_box(seasons = 2015:2024)

nond1 <- games |> group_by(team_id, season) |> tally() |> filter(n < 10) |> select(team_id)
nond1 <- pull(nond1)
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df <- games |> filter(!team_id %in% nond1 & !opponent_team_id %in% nond1)

3.2 Feature engineering

Feature engineering is the process of using what you know about something – domain knowl-
edge – to find features in data that can be used in machine learning algorithms. Sports is a
great place for this because not only do we know a lot because we follow the sport, but lots of
other people are looking at this all the time. Creativity is good.

A number of basketball heads – including Ken Pomeroy of KenPom fame – have noticed that
one of the predictors of the outcome of basketball games are possession metrics. How efficient
are teams with the possessions they have? Can’t score if you don’t have the ball, so how good
is a team at pushing the play and getting more possessions, giving themselves more chances
to score?

One problem? Possessions aren’t in typical metrics. They aren’t usually tracked. But you can
estimate them from typical box scores. The way to do that is like this:

Possessions = Field Goal Attempts – Offensive Rebounds + Turnovers + (0.475 *
Free Throw Attempts)

If you look at the data we already have, however, you’ll see possessions are not actually in the
data. Which is unfortunate. But we can calculate it pretty easily.

Then we’ll use the possessions estimate formula to get that, so we can then calculate offensive
and defensive efficiency – points per 100 possessions.

Then, we’re going to create season cumulative averages of those efficiencies, but we’re going
to lag them by one game. Why? Because we don’t know what the offensive efficiency is for
that game before that game. We only know what it was going into the game. So the lag gives
us what each team’s metrics are before they play the game. That’s good. We need that for
modeling. Otherwise, we’re cheating.

We’ll save that to a new dataframe called teamside.

3.2.1 Exercise 1: setting up your data

teamside <- df |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_??????????? = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
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team_points_per_?????????? = team_score/team_possessions,
team_defensive_points_per_possession = opponent_team_score/team_possessions,
team_offensive_efficiency = team_points_per_possession * 100,
team_defensive_efficiency = team_defensive_points_per_possession * 100,
team_season_offensive_efficiency = lag(cummean(team_offensive_efficiency), n=1),
team_season_defensive_efficiency = lag(cummean(team_defensive_efficiency), n=1),
score_margin = team_score - opponent_team_score,
absolute_score_margin = abs(score_margin)

) |>
filter(absolute_score_margin <= 40)

Now we’re going to repeat the process for the opponent, but we’re going to use some tricks
here. Because we have box score data, it means every game is in here twice. So every team in
one box score is the opponent in another. So we’re going to use that in our favor to create the
opponent side of the equation here and then we’ll join it back together afterwards. We start
by dropping the opponent_team_id, which we’ll get back by renaming the team_id to that,
then renaming our team stats to opponent stats.

3.2.2 Exercise 2: Opponent side

opponentside <- teamside |>
select(-?????????????) |>
rename(

opponent_team_id = team_id,
opponent_season_offensive_efficiency = team_season_offensive_efficiency,
opponent_season_defensive_efficiency = team_season_defensive_efficiency

) |>
select(

game_id,
opponent_team_id,
opponent_season_offensive_efficiency,
opponent_season_defensive_efficiency

)

Now, let’s join them.
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3.2.3 Exercise 3: Joining

bothsides <- ???????? |> inner_join(?????????)

Joining with `by = join_by(game_id, opponent_team_id)`

3.3 Modeling

Now we begin the process of creating a model. Modeling in data science has a ton of details,
but the process for each model type is similar.

1. Split your data into training and testing data sets. A common split is 80/20.
2. Train the model on the training dataset.
3. Evaluate the model on the training data.
4. Apply the model to the testing data.
5. Evaluate the model on the test data.

From there, it’s how you want to use the model. We’ll walk through a simple example here,
using a simple model – a logistic regression model.

What we’re trying to do here is predict which team will win given their efficiency with the
ball, expressed as the cumulative average efficiency. However, to make a prediction, we need
to know their stats BEFORE the game – what we knew about the team going into the game
in question.

3.3.1 Exercise 4: Who won?

The last problem to solve? Who won? We can add this with conditional logic. The other
thing we’re doing here is we’re going to is we’re going to convert our new team_result column
into a factor. What is a factor? A factor is a type of data in R that stores categorical values
that have a limited number of differences. So wins and losses are a perfect factor. Modeling
libraries are looking for factors so it can treat the differences in the data as categories, so that’s
why we’re converting it here.

The logic? If the team score is greater than the opponent team score, that’s a win. Otherwise,
they take the L as the kids say these days.

bothsides <- bothsides |> mutate(
team_result = as.factor(case_when(

team_score > ??????????? ~ "W",
opponent_team_score > ???????? ~ "L"
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)))

Now that we’ve done that, we need to look at the order of our factors.

3.3.2 Exercise 5: Looking at the factors

To do that, we first need to know what R sees when it sees our team_result factor. Is a win
first or is a loss first?

levels(bothsides$????_??????)

[1] "L" "W"

The order listed here is the order they are in. What this means is that our predictions will be
done through the lens of losses. That doesn’t make intuitive sense to us. We want to know
who will win! We can reorder the factors with relevel.

3.3.3 Exercise 6: Releveling the factors

bothsides$team_result <- relevel(bothsides$team_result, ref="?")

levels(bothsides$team_result)

[1] "W" "L"

For simplicity, let’s limit the number of columns we’re going to feed our model.

modelgames <- bothsides |>
select(

game_id,
game_date,
team_short_display_name,
opponent_team_short_display_name,
season,
team_season_offensive_efficiency,
team_season_defensive_efficiency,
opponent_season_offensive_efficiency,
opponent_season_defensive_efficiency,
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team_result
) |> na.omit()

3.4 Visualizing the decision boundary

This is just one dimension of the data, but it can illustrate how this works. You can almost
see a line running through the middle, with a lot of overlap. The further left or right you go,
the less overlap. You can read it like this: If this team scores this efficiently and the opponent
scores this efficiently, most of the time this team wins. Or loses. It just depends on where the
dot ends up.

That neatly captures the probabilities we’re looking at here.

ggplot() +
geom_point(

data=modelgames, aes(x=team_season_offensive_efficiency, y=opponent_season_offensive_efficiency, color=team_result))
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3.5 The logistic regression

To create a model, we have to go through a process. That process starts with splitting data
where we know the outomes into two groups – training and testing. The training data is what
we will use to create our model. The testing data is how we will determine how good it is.
Then, going forward, our model can predict games we haven’t seen yet.

To do this, we’re going to first split our modelgames data into two groups – with 80 percent
of it in one, 20 percent in the other. We do that by feeding our simplified dataframe into the
initial_split function. Then we’ll explicitly name those into new dataframes called train
and test.

3.5.1 Exercise 7: What are we splitting?

log_split <- initial_split(?????????, prop = .8)
log_train <- training(log_split)
log_test <- testing(log_split)

Now we have two dataframes – log_train and log_test – that we can now use for modeling.

First step to making a model is to set what type of model this will be. We’re going to name
our model object – log_mod works because this is a logistic regression model. We’ll use the
logistic_reg function in parsnip (the modeling library in Tidymodels) and set the engine to
“glm”. The mode in our case is “classification” because we’re trying to classify something as a
W or L. Later, we’ll use “regression” to predict numbers.

log_mod <-
logistic_reg() |>
set_engine("glm") |>
set_mode("classification")

The next step is to create a recipe. This is a series of steps we’ll use to put our data into our
model. For example – what is predicting what? And what aren’t predictors and what are?
And do we have to do any pre-processing of the data?

The first part of the recipe is the formula. In this case, we’re saying – in real words –
team_result is approximately modeled by our predictors, which we represent as . which
means all the stuff. Then, importantly, we say what isn’t a predictor next with update_role.
So the team name, the game date and things like that are not predictors. So we need to tell
it that. The last step is normalizing our numbers. With logistic regression, scale differences
in numbers can skew things, so we’re going to turn everything into Z-scores.
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log_recipe <-
recipe(team_result ~ ., data = log_train) |>
update_role(game_id, game_date, team_short_display_name, opponent_team_short_display_name, season, new_role = "ID") |>
step_normalize(all_predictors())

summary(log_recipe)

# A tibble: 10 x 4
variable type role source
<chr> <list> <chr> <chr>

1 game_id <chr [2]> ID original
2 game_date <chr [1]> ID original
3 team_short_display_name <chr [3]> ID original
4 opponent_team_short_display_name <chr [3]> ID original
5 season <chr [2]> ID original
6 team_season_offensive_efficiency <chr [2]> predictor original
7 team_season_defensive_efficiency <chr [2]> predictor original
8 opponent_season_offensive_efficiency <chr [2]> predictor original
9 opponent_season_defensive_efficiency <chr [2]> predictor original
10 team_result <chr [3]> outcome original

Now we have enough for a workflow. A workflow is what we use to put it all together. In it,
we add our model definition and our recipe.

3.5.2 Exercise 8: Making a workflow

log_workflow <-
workflow() |>
add_model(log_???) |>
add_recipe(log_??????)

And now we fit our model (this can take a few minutes).

log_fit <-
log_workflow |>
fit(data = log_train)
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3.6 Evaluating the fit

With logistic regression, there’s two things we’re looking at: The prediction and the probabil-
ities. We can get those with two different fits and combine them together.

First, you can see the predictions like this:

trainpredict <- log_fit |> predict(new_data = log_train) |>
bind_cols(log_train)

head(trainpredict)

# A tibble: 6 x 11
.pred_class game_id game_date team_short_display_n~1 opponent_team_short_~2
<fct> <int> <date> <chr> <chr>

1 L 401096956 2018-11-23 Marquette Louisville
2 W 400843818 2016-01-17 S Illinois Drake
3 W 400986857 2017-12-21 BYU Idaho St
4 L 401491229 2023-01-11 Loyola MD Bucknell
5 L 401489063 2022-12-10 N Arizona Utah Valley
6 W 401484595 2023-02-04 Tennessee Auburn
# i abbreviated names: 1: team_short_display_name,
# 2: opponent_team_short_display_name
# i 6 more variables: season <int>, team_season_offensive_efficiency <dbl>,
# team_season_defensive_efficiency <dbl>,
# opponent_season_offensive_efficiency <dbl>,
# opponent_season_defensive_efficiency <dbl>, team_result <fct>

Then, we can just add it to trainpredict using bind_cols, which means we’re going to bind
the columns of this new fit to the old trainpredict.

trainpredict <- log_fit |> predict(new_data = log_train, type="prob") |>
bind_cols(trainpredict)

head(trainpredict)

# A tibble: 6 x 13
.pred_W .pred_L .pred_class game_id game_date team_short_display_name

<dbl> <dbl> <fct> <int> <date> <chr>
1 0.338 0.662 L 401096956 2018-11-23 Marquette
2 0.772 0.228 W 400843818 2016-01-17 S Illinois
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3 0.773 0.227 W 400986857 2017-12-21 BYU
4 0.271 0.729 L 401491229 2023-01-11 Loyola MD
5 0.259 0.741 L 401489063 2022-12-10 N Arizona
6 0.707 0.293 W 401484595 2023-02-04 Tennessee
# i 7 more variables: opponent_team_short_display_name <chr>, season <int>,
# team_season_offensive_efficiency <dbl>,
# team_season_defensive_efficiency <dbl>,
# opponent_season_offensive_efficiency <dbl>,
# opponent_season_defensive_efficiency <dbl>, team_result <fct>

There’s several metrics to look at to evaluate the model on our training data, but the two we
will use are accuracy and kap. They both are pointing toward how well the model did in two
different ways. The accuracy metric looks at the number of predictions that are correct when
compared to known results. The inputs here are the data, the column that has the actual
result, and the column with the prediction, called .pred_class.

3.6.1 Exercise 9: Metrics

metrics(trainpredict, ????_??????, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.677
2 kap binary 0.355

So how accurate is our model? If we’re looking for perfection, we’re far from it. But if we’re
looking to make straight up win loss bets … we’re doing okay!

Another way to look at the results is the confusion matrix. The confusion matrix shows what
was predicted compared to what actually happened. The squares are True Positives, False
Positives, True Negatives and False Negatives. True values vs the total values make up the
accuracy.

3.6.2 Exercise 10: Confusion matrix

trainpredict |>
conf_mat(????_result, .pred_?????)
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Truth
Prediction W L

W 26403 12595
L 12620 26538

3.7 Comparing it to test data

Now we can apply our fit to the test data to see how robust it is. If the metrics are similar,
that’s good – it means our model is robust. If the metrics change a lot, that’s bad. It means
our model is guessing.

testpredict <- log_fit |> predict(new_data = log_test) |>
bind_cols(log_test)

testpredict <- log_fit |> predict(new_data = log_test, type="prob") |>
bind_cols(testpredict)

And now some metrics on the test data.

3.7.1 Exercise 11: Testing

metrics(????predict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.679
2 kap binary 0.358

How does that compare to our training data? Is it lower? Higher? Are the changes large –
like are we talking about single digit changes or double digit changes? The less it changes, the
better.

And now the confusion matrix.

testpredict |>
conf_mat(team_result, .pred_class)
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Truth
Prediction W L

W 6604 3052
L 3221 6663

How does that compare to the training data?

3.8 How well did it do with Nebraska?

Let’s grab predictions for Nebraska from both our test and train data and take a look.

nutrain <- trainpredict |> filter(team_short_display_name == "Nebraska" & season == 2024)

nutest <- testpredict |> filter(team_short_display_name == "Nebraska" & season == 2024)

bind_rows(nutrain, nutest) |>
arrange(game_date) |>
select(.pred_W, .pred_class, team_result, team_short_display_name, opponent_team_short_display_name) |>
gt()

.pred_W .pred_class team_result team_short_display_name opponent_team_short_display_name
0.9903245 W W Nebraska Rider
0.9655871 W W Nebraska Stony Brook
0.7899433 W W Nebraska Oregon St
0.6840794 W W Nebraska Duquesne
0.9601307 W W Nebraska Fullerton
0.4456791 L L Nebraska Creighton
0.5510326 W L Nebraska Minnesota
0.5024072 W W Nebraska Michigan St
0.4904807 L W Nebraska Kansas St
0.7897485 W W Nebraska North Dakota
0.8886867 W W Nebraska SC State
0.6859965 W W Nebraska Indiana
0.5322284 W L Nebraska Wisconsin
0.3198108 L W Nebraska Purdue
0.5361151 W L Nebraska Iowa
0.6545672 W L Nebraska Rutgers
0.5030016 W W Nebraska Northwestern
0.4291228 L W Nebraska Ohio State
0.5574689 W L Nebraska Maryland
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0.4150621 L W Nebraska Wisconsin
0.3412217 L L Nebraska Illinois
0.4922467 L L Nebraska Northwestern
0.6401907 W W Nebraska Michigan
0.5893802 W W Nebraska Penn State
0.6827122 W W Nebraska Indiana
0.4931792 L W Nebraska Minnesota
0.5560308 W L Nebraska Ohio State

By our cumulative metrics, are there any surprises? Should we have beaten Creighton or
Purdue?

How could you improve this?
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4 Decision trees and random forests

4.1 The basics

Tree-based algorithms are based on decision trees, which are very easy to understand. A
decision tree can basically be described as a series of questions. Does this player have more or
less than x seasons of experience? Do they have more or less then y minutes played? Do they
play this or that position? Answer enough questions, and you can predict what that player
should have on average.

The upside of decision trees is that if the model is small, you can explain it to anyone. They’re
very easy to understand. The trouble with decision trees is that if the model is small, they’re
a bit of a crude instrument. As such, multiple tree based methods have been developed as
improvements on the humble decision tree.

The most common is the random forest.

Let’s implement one. We start with libraries.

library(tidyverse)
library(tidymodels)
library(hoopR)

set.seed(1234)

Let’s use what we had from the last tutorial – a rolling window of points per possession for
team and opponent. I’ve gone ahead and run it all in the background. You can see modelgames
by using head in the block.

games <- load_mbb_team_box(seasons = 2015:2024)

nond1 <- games |> group_by(team_id, season) |> tally() |> filter(n < 10) |> select(team_id)
nond1 <- pull(nond1)

df <- games |> filter(!team_id %in% nond1 & !opponent_team_id %in% nond1)

teamside <- df |>
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group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_possessions = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
team_points_per_possession = team_score/team_possessions,
team_defensive_points_per_possession = opponent_team_score/team_possessions,
team_offensive_efficiency = team_points_per_possession * 100,
team_defensive_efficiency = team_defensive_points_per_possession * 100,
team_season_offensive_efficiency = lag(cummean(team_offensive_efficiency), n=1),
team_season_defensive_efficiency = lag(cummean(team_defensive_efficiency), n=1),
score_margin = team_score - opponent_team_score,
absolute_score_margin = abs(score_margin)

) |>
filter(absolute_score_margin <= 40) |>
ungroup()

opponentside <- teamside |>
select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_season_offensive_efficiency = team_season_offensive_efficiency,
opponent_season_defensive_efficiency = team_season_defensive_efficiency

) |>
select(

game_id,
opponent_team_id,
opponent_season_offensive_efficiency,
opponent_season_defensive_efficiency

)

bothsides <- teamside |> inner_join(opponentside)

Joining with `by = join_by(game_id, opponent_team_id)`

bothsides <- bothsides |> mutate(
team_result = as.factor(case_when(

team_score > opponent_team_score ~ "W",
opponent_team_score > team_score ~ "L"

)))

bothsides$team_result <- relevel(bothsides$team_result, ref="W")
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modelgames <- bothsides |>
select(

game_id,
game_date,
team_short_display_name,
opponent_team_short_display_name,
season,
team_season_offensive_efficiency,
team_season_defensive_efficiency,
opponent_season_offensive_efficiency,
opponent_season_defensive_efficiency,
team_result
) |>

na.omit()

For this tutorial, we’re going to create two models from two workflows so that we can compare
a logistic regression to a random forest.

4.2 Setup

A random forest is, as the name implies, a large number of decision trees, and they use a
random set of inputs. The algorithm creates a large number of randomly selected training
inputs, and randomly chooses the feature input for each branch, creating predictions. The
goal is to create uncorrelated forests of trees. The trees all make predictions, and the wisdom
of the crowds takes over. In the case of classification algorithm, the most common prediction
is the one that gets chosen. In a regression model, the predictions get averaged together.

The random part of random forest is in how the number of tree splits get created and how
the samples from the data are taken to generate the splits. They’re randomized, which has
the effect of limiting the influence of a particular feature and prevents overfitting – where your
predictions are so tailored to your training data that they miss badly on the test data.

For random forests, we change the model type to rand_forest and set the engine to “ranger”.
There’s multiple implementations of the random forest algorithm, and the differences between
them are beyond the scope of what we’re doing here.

We’re going to go through the steps of modeling again, starting with splitting our modelgames
data.
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4.2.1 Exercise 1: setting up your data

game_split <- initial_split(??????????, prop = .8)
game_train <- training(game_split)
game_test <- testing(game_split)

For this walkthrough, we’re going to do both a logistic regression and a random forest side by
side to show the value of workflows.

The recipe we’ll create is the same for both, so we’ll use it twice.

4.2.2 Exercise 2: setting up the receipe

So what data are we feeding into our recipe?

game_recipe <-
recipe(team_result ~ ., data = game_?????) |>
update_role(game_id, game_date, team_short_display_name, opponent_team_short_display_name, season, new_role = "ID") |>
step_normalize(all_predictors())

summary(game_recipe)

# A tibble: 10 x 4
variable type role source
<chr> <list> <chr> <chr>

1 game_id <chr [2]> ID original
2 game_date <chr [1]> ID original
3 team_short_display_name <chr [3]> ID original
4 opponent_team_short_display_name <chr [3]> ID original
5 season <chr [2]> ID original
6 team_season_offensive_efficiency <chr [2]> predictor original
7 team_season_defensive_efficiency <chr [2]> predictor original
8 opponent_season_offensive_efficiency <chr [2]> predictor original
9 opponent_season_defensive_efficiency <chr [2]> predictor original
10 team_result <chr [3]> outcome original

Now, we’re going to create two different model specifications. The first will be the logistic
regression model definition and the second will be the random forest.
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log_mod <-
logistic_reg() |>
set_engine("glm") |>
set_mode("classification")

rf_mod <-
rand_forest() |>
set_engine("ranger") |>
set_mode("classification")

Now we have enough for our workflows. We have two models and one recipe.

4.2.3 Exercise 3: making workflows

log_workflow <-
workflow() |>
add_model(???_mod) |>
add_recipe(????_recipe)

rf_workflow <-
workflow() |>
add_model(??_mod) |>
add_recipe(????_recipe)

Now we can fit our models to the data.

4.2.4 Exercise 4: fitting our models

log_fit <-
log_workflow |>
fit(data = ????_?????)

rf_fit <-
rf_workflow |>
fit(data = ????_?????)

Now we can bind our predictions to the training data and see how we did.
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logpredict <- log_fit |> predict(new_data = game_train) |>
bind_cols(game_train)

logpredict <- log_fit |> predict(new_data = game_train, type="prob") |>
bind_cols(logpredict)

rfpredict <- rf_fit |> predict(new_data = game_train) |>
bind_cols(game_train)

rfpredict <- rf_fit |> predict(new_data = game_train, type="prob") |>
bind_cols(rfpredict)

Now, how did we do? First, let’s look at the logistic regression.

4.2.5 Exercise 5: The first metrics

What prediction dataset do we feed into our metrics?

metrics(??????????, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.676
2 kap binary 0.353

Same as last time, the logistic regression model comes in at 68 percent accuracy, and when
we expose it to testing data, it remains pretty stable. This is a gigantic hint about what is to
come.

How about the random forest?

4.2.6 Exercise 6: Random forest metrics

metrics(??????????, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
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1 accuracy binary 0.987
2 kap binary 0.974

Holy buckets! We made a model that’s 99 percent accurate? GET ME TO VEGAS.

Remember: Where a model makes its money is in data that it has never seen before.

First, we look at logistic regression.

logtestpredict <- log_fit |> predict(new_data = game_test) |>
bind_cols(game_test)

logtestpredict <- log_fit |> predict(new_data = game_test, type="prob") |>
bind_cols(logtestpredict)

metrics(logtestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.684
2 kap binary 0.368

Just about the same. That’s a robust model.

Now, the inevitable crash with random forests.

rftestpredict <- rf_fit |> predict(new_data = game_test) |>
bind_cols(game_test)

rftestpredict <- rf_fit |> predict(new_data = game_test, type="prob") |>
bind_cols(rftestpredict)

metrics(rftestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.664
2 kap binary 0.328

Right at 66 percent. A little bit lower than logistic regression. But did they come to the same
answers to get those numbers? No.
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logtestpredict |>
conf_mat(team_result, .pred_class)

Truth
Prediction W L

W 6701 3052
L 3079 6576

rftestpredict |>
conf_mat(team_result, .pred_class)

Truth
Prediction W L

W 6455 3200
L 3325 6428

Our two models, based on our very basic feature engineering, are only slightly better than
flipping a coin. If we want to get better, we’ve got work to do.
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5 XGBoost

5.1 The basics

As we learned in the previous chapter, random forests (and bagged methods) average together
a large number of trees to get to an answer. Random forests add a wrinkle by randomly
choosing features at each branch to make it so each tree is not correlated and the trees are
rather deep. The idea behind averaging them together is to cut down on the variance in
predictions – random forests tend to be somewhat harder to fit to unseen data because of the
variance. Random forests are fairly simple to implement, and are very popular.

Boosting methods are another wrinkle in the tree based methods. Instead of deep trees,
boosting methods intentionally pick shallow trees – called stumps – that, at least initially, do
a poor job of predicting the outcome. Then, each subsequent stump takes the job the previous
one did, optimizes to reduce the residuals – the gap between prediction and reality – and
makes a prediction. And then the next one does the same, and so on and so on.

The path to a boosted method is complex, the results can take a lot of your computer’s
time, but the models are more generalizable, meaning they handle new data better than other
methods. Among data scientists, boosted methods, such as xgboost and lightgbm, are very
popular for solving a wide variety of problems.

Let’s re-implement our predictions in an XGBoost algorithm. First, we’ll load libraries.

library(tidyverse)
library(tidymodels)
library(zoo)
library(hoopR)

set.seed(1234)

We’ll load our game data and do a spot of feature engineering that we used with our other
models.

teamgames <- load_mbb_team_box(seasons = 2015:2024)

teamstats <- teamgames |>
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mutate(
possessions = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
ppp = team_score/possessions,
oppp = opponent_team_score/possessions

)

rollingteamstats <- teamstats |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_rolling_ppp = rollmean(lag(ppp, n=1), k=5, align="right", fill=NA),
team_rolling_oppp = rollmean(lag(oppp, n=1), k=5, align="right", fill=NA)
) |>

ungroup()

team_side <- rollingteamstats |>
select(

game_id,
team_id,
team_short_display_name,
opponent_team_id,
game_date,
season,
team_score,
team_rolling_ppp,
team_rolling_oppp
)

opponent_side <- team_side |>
select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_short_display_name = team_short_display_name,
opponent_score = team_score,
opponent_rolling_ppp = team_rolling_ppp,
opponent_rolling_oppp = team_rolling_oppp

) |>
mutate(opponent_id = as.numeric(opponent_team_id)

)

games <- team_side |> inner_join(opponent_side)
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games <- games |> mutate(
team_result = as.factor(case_when(

team_score > opponent_score ~ "W",
opponent_score > team_score ~ "L"

)))

games$team_result <- relevel(games$team_result, ref="W")

modelgames <- games |>
select(

game_id,
game_date,
team_short_display_name,
opponent_short_display_name,
season,
team_rolling_ppp,
team_rolling_oppp,
opponent_rolling_ppp,
opponent_rolling_oppp,
team_result
) |>

na.omit()

Per usual, we split our data into training and testing.

game_split <- initial_split(modelgames, prop = .8)
game_train <- training(game_split)
game_test <- testing(game_split)

And our recipe.

game_recipe <-
recipe(team_result ~ ., data = game_train) |>
update_role(game_id, game_date, team_short_display_name, opponent_short_display_name, season, new_role = "ID")

summary(game_recipe)

# A tibble: 10 x 4
variable type role source
<chr> <list> <chr> <chr>

1 game_id <chr [2]> ID original
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2 game_date <chr [1]> ID original
3 team_short_display_name <chr [3]> ID original
4 opponent_short_display_name <chr [3]> ID original
5 season <chr [2]> ID original
6 team_rolling_ppp <chr [2]> predictor original
7 team_rolling_oppp <chr [2]> predictor original
8 opponent_rolling_ppp <chr [2]> predictor original
9 opponent_rolling_oppp <chr [2]> predictor original
10 team_result <chr [3]> outcome original

To this point, everything looks like what we’ve done before. Nothing has really changed. It’s
about to.

5.2 Hyperparameters

The hyperparameters are the inputs into the algorithm that make the fit. To find the ideal
hyperparameters, you need to tune them. But first, let’s talk about the hyperparameters we are
going to tune (there are others we can, but every addition to the number of hyperparameters
means more computation):

• mtry – the number of predictors that will be randomly sampled at each split when making
trees.

• Learn rate – this controls how fast the algorithm goes down the gradient descent – how
fast it learns. Too fast and you’ll overshoot the optimal stopping point and start going
up the error curve. Too slow and you’ll never get to the optimal stopping point.

• Tree depth – controls the depth of each individual tree. Too short and you’ll need a lot
of them to get good results. Too deep and you risk overfitting.

• Minimum number of observations in the terminal node (min_n) – controls the complexity
of each tree. Typical values range from 5-15, and higher values keep a model from figuring
out relationships that are unique to that training set (ie overfitting).

• Loss reduction – this is the minimum loss reduction to make a new tree split. If the
improvement hits this minimum, a split occurs. A low value and you get a complex tree.
High value and you get a tree more robust to new data, but it’s more conservative.

Others you can tune, but have sensible defaults:

• Number of trees – this is the total number of trees in the sequence. A gradient boosting
algorithm will minimize residuals forever, so you need to tell it where to stop. That
stopping point is different for every problem. You can tune this, but I’ll warn you – this
is the most computationally expensive tuning. For our example, we’re going to set the
number of trees at 30. The default is 15. Tuning it can take a good computer more than
an hour to complete, and you’ll have gained .1 percent of accuracy. If we’re Amazon and
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billions of dollars are on the line, it’s worth it. For predicting NCAA tournament games,
it is not.

• Sample size – The fraction of the total training set that can be used for each boosting
round. Low values may lead to underfitting, high to overfitting.

All of these combine to make the model, and each has their own specific ideal. How do we find
it? Tuning.

5.2.1 Exercise 1: tuning

First, we make a model and label each parameter as tune()

xg_mod <- boost_tree(
trees = 30,
mtry = tune(),
learn_rate = ????(),
tree_depth = ????(),
min_n = ????(),
loss_reduction = ????()
) |>
set_mode("classification") |>
set_engine("xgboost")

5.2.2 Exercise 2: making a workflow

Let’s make a workflow now that we have our recipe and our model.

game_wflow <-
workflow() |>
add_model(??_???) |>
add_recipe(????_recipe)

Now, to tune the model, we have to create a grid. The grid is essentially a random sample
of parameters to try. The latin hypercube is a method of creating a near-random sample of
parameter values in multidimentional distributions (ie there’s more than one predictor). The
latin hypercube is near-random because there has to be one sample in each row and column of
the hypercube. Essentially, it removes the possibility of totally empty spaces in the cube. Why
is that important? Because this hypercube is how your tuning is going to find the optimal
outputs.

What follows is what parameters the hypercube will tune.
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xgb_grid <- grid_latin_hypercube(
finalize(mtry(), game_train),
tree_depth(),
min_n(),
loss_reduction(),
learn_rate(),
size = 30

)

xgb_grid

# A tibble: 30 x 5
mtry tree_depth min_n loss_reduction learn_rate

<int> <int> <int> <dbl> <dbl>
1 3 6 10 4.14e-3 1.84e- 4
2 2 9 16 1.27e-4 6.39e- 3
3 10 2 23 1.02e-5 9.98e-10
4 5 12 20 4.56e-7 5.62e-10
5 9 8 33 1.79e+1 6.33e- 2
6 6 8 15 1.19e-9 2.62e- 3
7 5 5 7 1.44e-1 7.97e- 5
8 7 12 28 3.41e-8 4.06e- 5
9 1 13 25 1.04e+1 1.29e-10
10 4 5 6 1.37e+0 6.46e- 7
# i 20 more rows

How do we tune it? Using something called cross fold validation. Cross fold validation takes
our grid, applies it to a set of subsets (in our case 10 subsets) and compares. It’ll take a
random square in the hypercube, try the combinations in there, and see what happens. It’ll
then keep doing that, over and over and over and over. When it’s done, each validation set
will have a set of tuned values and outcomes that we can evaluate and pick the optimal set to
get a result.

5.2.3 Exercise 3: creating our cross-fold validation set

This will create the folds, which are just 10 random subsets of the training data.

game_folds <- vfold_cv(game_?????)

game_folds
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# 10-fold cross-validation
# A tibble: 10 x 2

splits id
<list> <chr>

1 <split [60703/6745]> Fold01
2 <split [60703/6745]> Fold02
3 <split [60703/6745]> Fold03
4 <split [60703/6745]> Fold04
5 <split [60703/6745]> Fold05
6 <split [60703/6745]> Fold06
7 <split [60703/6745]> Fold07
8 <split [60703/6745]> Fold08
9 <split [60704/6744]> Fold09
10 <split [60704/6744]> Fold10

Now we come to the part that is going to take some time on your computer. How long? It
depends. On my old 2018 Intel Mac, this part took about 25-30 minutes on my machine and
made it sounds like it was attempting liftoff. My 2022 M1 Mac? Right around 10 minutes.
Depending on how new and how powerful you computer is, it could take minutes, or it could
take hours. The point being, start it up, walk away, and let it burn.

xgb_res <- tune_grid(
game_wflow,
resamples = game_folds,
grid = xgb_grid,
control = control_grid(save_pred = TRUE)

)

Our grid has run on all of our validation samples, and what do we see?

collect_metrics(xgb_res)

# A tibble: 60 x 11
mtry min_n tree_depth learn_rate loss_reduction .metric .estimator mean

<int> <int> <int> <dbl> <dbl> <chr> <chr> <dbl>
1 3 10 6 1.84e- 4 0.00414 accuracy binary 0.628
2 3 10 6 1.84e- 4 0.00414 roc_auc binary 0.680
3 2 16 9 6.39e- 3 0.000127 accuracy binary 0.633
4 2 16 9 6.39e- 3 0.000127 roc_auc binary 0.687
5 10 23 2 9.98e-10 0.0000102 accuracy binary 0.500
6 10 23 2 9.98e-10 0.0000102 roc_auc binary 0.5
7 5 20 12 5.62e-10 0.000000456 accuracy binary 0.500
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8 5 20 12 5.62e-10 0.000000456 roc_auc binary 0.5
9 9 33 8 6.33e- 2 17.9 accuracy binary 0.636
10 9 33 8 6.33e- 2 17.9 roc_auc binary 0.689
# i 50 more rows
# i 3 more variables: n <int>, std_err <dbl>, .config <chr>

Well we see 60 combinations and the metrics from them. But that doesn’t mean much to us
just eyeballing it. We want to see the best combination. There’s a function to just show us
the best one called … wait for it … show_best.

show_best(xgb_res, "accuracy")

# A tibble: 5 x 11
mtry min_n tree_depth learn_rate loss_reduction .metric .estimator mean
<int> <int> <int> <dbl> <dbl> <chr> <chr> <dbl>

1 9 33 8 0.0633 17.9 accuracy binary 0.636
2 1 34 11 0.0170 0.0000000846 accuracy binary 0.635
3 2 16 9 0.00639 0.000127 accuracy binary 0.633
4 2 30 11 0.0276 0.00000530 accuracy binary 0.633
5 2 20 7 0.0000202 0.0372 accuracy binary 0.632
# i 3 more variables: n <int>, std_err <dbl>, .config <chr>

The best combination as of this data update comes up with an accuracy of about 61.5 per-
cent.

5.3 Finalizing our model

Let’s capture our best set of hyperparameters so we can use them in our model.

best_acc <- select_best(xgb_res, "accuracy")

And now we put that into a final workflow. Pay attention to the main arguments in the output
below.

final_xgb <- finalize_workflow(
game_wflow,
best_acc

)

final_xgb
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== Workflow ====================================================================
Preprocessor: Recipe
Model: boost_tree()

-- Preprocessor ----------------------------------------------------------------
0 Recipe Steps

-- Model -----------------------------------------------------------------------
Boosted Tree Model Specification (classification)

Main Arguments:
mtry = 9
trees = 30
min_n = 33
tree_depth = 8
learn_rate = 0.0633417088937915
loss_reduction = 17.9327965928095

Computational engine: xgboost

There’s our best set of hyperparameters. We’ve tuned this model to give the best possible set
of results in those settings. Now we apply it like we have been doing all along.

5.3.1 Exercise 4: making our final workflow

We create a fit using our finalized workflow.

xg_fit <-
?????_xgb |>
fit(data = game_train)

We can see something things about that fit, including all the iterations of our XGBoost model.
Remember: Boosted models work sequentially. One after the other. So you can see it at work.
The error goes down with each iteration as we go down the gradient descent.

xg_fit |>
extract_fit_parsnip()

parsnip model object

##### xgb.Booster
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raw: 292.2 Kb
call:
xgboost::xgb.train(params = list(eta = 0.0633417088937915, max_depth = 8L,

gamma = 17.9327965928095, colsample_bytree = 1, colsample_bynode = 1,
min_child_weight = 33L, subsample = 1), data = x$data, nrounds = 30,
watchlist = x$watchlist, verbose = 0, nthread = 1, objective = "binary:logistic")

params (as set within xgb.train):
eta = "0.0633417088937915", max_depth = "8", gamma = "17.9327965928095", colsample_bytree = "1", colsample_bynode = "1", min_child_weight = "33", subsample = "1", nthread = "1", objective = "binary:logistic", validate_parameters = "TRUE"

xgb.attributes:
niter

callbacks:
cb.evaluation.log()

# of features: 4
niter: 30
nfeatures : 4
evaluation_log:

iter training_logloss
1 0.6866136
2 0.6808034

---
29 0.6308232
30 0.6303655

5.3.2 Exercise 5: prediction time

Now, like before, we can bind our predictions using our xg_fit to the game_train data.

trainresults <- game_train |>
bind_cols(predict(??_???, game_train))

5.3.3 Exercise 6: metrics

And now see how we did.

metrics(????????????, truth = team_result, estimate = .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.646
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2 kap binary 0.293

How about the test data?

testresults <- game_test |>
bind_cols(predict(xg_fit, game_test))

metrics(testresults, truth = team_result, estimate = .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.632
2 kap binary 0.264

Unlike the random forest, not nearly the drop in metrics between train and test.
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6 LightGBM

6.1 The basics

LightGBM is another tree-based method that is similar to XGBoost but differs in ways that
make it computationally more efficient. Where XGBoost and Random Forests are based on
branches, LightGBM grows leaf-wise. Think of it like this – XGBoost uses lots of short trees
with branches – it comes to a fork, makes a decision that reduces the amount of error the last
tree got, and makes a new branch. LightGBM on the other hand, makes new leaves of each
branch, which can mean lots of little splits, instead of big ones. That can lead to over-fitting
on small datasets, but it also means it’s much faster than XGBoost.

LightGBM also uses histograms of the data to make choices, where XGBoost is comptutation-
ally optimizing those choices. Roughly translated – LightGBM is looking at the fat part of a
normal distribution to make choices, where XGBoost is tuning parameters to find the optimal
path forward. It’s another reason why LightGBM is faster, but also not reliable with small
datasets.

Let’s implement a LightGBM model. We start with libraries.

library(tidyverse)
library(tidymodels)
library(hoopR)
library(zoo)
library(bonsai)

set.seed(1234)

We’ll continue to use what we’ve done for feature engineering – a rolling window of points per
possession for team and opponent. You should be quite familiar with this by now.

teamgames <- load_mbb_team_box(seasons = 2015:2024)

teamstats <- teamgames |>
mutate(

possessions = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
ppp = team_score/possessions,
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oppp = opponent_team_score/possessions
)

rollingteamstats <- teamstats |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_rolling_ppp = rollmean(lag(ppp, n=1), k=5, align="right", fill=NA),
team_rolling_oppp = rollmean(lag(oppp, n=1), k=5, align="right", fill=NA)
) |>

ungroup()

team_side <- rollingteamstats |>
select(

game_id,
team_id,
team_short_display_name,
opponent_team_id,
game_date,
season,
team_score,
team_rolling_ppp,
team_rolling_oppp
)

opponent_side <- team_side |>
select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_short_display_name = team_short_display_name,
opponent_score = team_score,
opponent_rolling_ppp = team_rolling_ppp,
opponent_rolling_oppp = team_rolling_oppp

) |>
mutate(opponent_id = as.numeric(opponent_team_id)

)

games <- team_side |> inner_join(opponent_side)

games <- games |> mutate(
team_result = as.factor(case_when(
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team_score > opponent_score ~ "W",
opponent_score > team_score ~ "L"

)))

games$team_result <- relevel(games$team_result, ref="W")

modelgames <- games |>
select(

game_id,
game_date,
team_short_display_name,
opponent_short_display_name,
season,
team_rolling_ppp,
team_rolling_oppp,
opponent_rolling_ppp,
opponent_rolling_oppp,
team_result
) |>

na.omit()

For this tutorial, we’re going to create three models from three workflows so that we can
compare a logistic regression to a random forest to a lightbgm model.

6.2 Setup

We’re going to go through the steps of modeling again, starting with splitting our modelgames
data.

6.2.1 Exercise 1: setting up your data

game_split <- initial_split(??????????, prop = .8)
game_train <- training(game_split)
game_test <- testing(game_split)

The recipe we’ll create is the same for both, so we’ll use it three times.
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6.2.2 Exercise 2: setting up the receipe

So what data are we feeding into our recipe?

game_recipe <-
recipe(team_result ~ ., data = game_?????) |>
update_role(game_id, game_date, team_short_display_name, opponent_short_display_name, season, new_role = "ID") |>
step_normalize(all_predictors())

summary(game_recipe)

# A tibble: 10 x 4
variable type role source
<chr> <list> <chr> <chr>

1 game_id <chr [2]> ID original
2 game_date <chr [1]> ID original
3 team_short_display_name <chr [3]> ID original
4 opponent_short_display_name <chr [3]> ID original
5 season <chr [2]> ID original
6 team_rolling_ppp <chr [2]> predictor original
7 team_rolling_oppp <chr [2]> predictor original
8 opponent_rolling_ppp <chr [2]> predictor original
9 opponent_rolling_oppp <chr [2]> predictor original
10 team_result <chr [3]> outcome original

Now, we’re going to create three different model specifications. The first will be the logistic
regression model definition, the second will be the random forest, the third is the lightgbm.

log_mod <-
logistic_reg() |>
set_engine("glm") |>
set_mode("classification")

rf_mod <-
rand_forest() |>
set_engine("ranger") |>
set_mode("classification")

lightgbm_mod <-
boost_tree() |>
set_engine("lightgbm") |>
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set_mode(mode = "classification")

Now we have enough for our workflows. We have three models and one recipe.

6.2.3 Exercise 3: making workflows

log_workflow <-
workflow() |>
add_model(???_mod) |>
add_recipe(????_recipe)

rf_workflow <-
workflow() |>
add_model(??_mod) |>
add_recipe(????_recipe)

lightgbm_workflow <-
workflow() |>
add_model(light???_mod) |>
add_recipe(game_recipe)

Now we can fit our models to the data.

6.2.4 Exercise 4: fitting our models

log_fit <-
log_workflow |>
fit(data = ????_?????)

rf_fit <-
rf_workflow |>
fit(data = ????_?????)

lightgbm_fit <-
lightgbm_workflow |>
fit(data = ????_?????)
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6.3 Prediction time

Now we can bind our predictions to the training data and see how we did.

logpredict <- log_fit |> predict(new_data = game_train) |>
bind_cols(game_train)

logpredict <- log_fit |> predict(new_data = game_train, type="prob") |>
bind_cols(logpredict)

rfpredict <- rf_fit |> predict(new_data = game_train) |>
bind_cols(game_train)

rfpredict <- rf_fit |> predict(new_data = game_train, type="prob") |>
bind_cols(rfpredict)

lightgbmpredict <- lightgbm_fit |> predict(new_data = game_train) |>
bind_cols(game_train)

lightgbmpredict <- lightgbm_fit |> predict(new_data = game_train, type="prob") |>
bind_cols(lightgbmpredict)

Now, how did we do?

6.3.1 Exercise 5: The first metrics

What prediction dataset do we feed into our metrics? Let’s look first at the random forest,
because it’s a tree-based method just like lightgbm.

metrics(?????????, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.993
2 kap binary 0.985

Same as last time, the random forest produces bonkers training numbers. Can you say over-
fit?

How about the lightgbm?
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6.3.2 Exercise 6: LightGBM metrics

metrics(????????predict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.655
2 kap binary 0.310

About 66 percent accuracy. Which, if you’ll recall, is a few percentage points better than
logistic regression, and worse than random forest WITH A HUGE ASTERISK.

Remember: Where a model makes its money is in data that it has never seen before.

First, we look at random forest. The inevitable crash with random forests.

rftestpredict <- rf_fit |> predict(new_data = game_test) |>
bind_cols(game_test)

rftestpredict <- rf_fit |> predict(new_data = game_test, type="prob") |>
bind_cols(rftestpredict)

metrics(rftestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.618
2 kap binary 0.237

Right at 62 percent. A little bit lower than logistic regression. But did they come to the same
answers to get those numbers? No.

And now lightGBM.

lightgbmtestpredict <- lightgbm_fit |> predict(new_data = game_test) |>
bind_cols(game_test)

lightgbmtestpredict <- lightgbm_fit |> predict(new_data = game_test, type="prob") |>
bind_cols(lightgbmtestpredict)
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metrics(lightgbmtestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.633
2 kap binary 0.267

Our three models, based on our very basic feature engineering, are still only slightly better
than flipping a coin. If we want to get better, we’ve still got work to do.
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7 Support Vector Machines

The last method of statistical learning that we’ll use is the Support Vector Machine. The
concept to understand about the support vector machine is the concept of a hyperplane. First
think of a hyperplane as a line – a means to separate wins and losses along an axis where a
certain stat says this way is a win and that way is a loss. Each dot in the scatter plot is a
support vector. The hyperplane separates the support vectors into their classes – it’s the line
between winning and losing. When you have just two stats like that, it’s pretty easy. Where
support vector machines get hard is when you have many predictors that create the hyperplane.
Then, instead of a line, it becomes a multidimensional shape in a multidimensional space.

The further away from our hyperplane, the more confident we are in the prediction.

We’re going to implement a support vector machine along side a logistic regression and a
lightGBM model.

Let’s start with our libraries, per usual.

library(tidyverse)
library(tidymodels)
library(zoo)
library(bonsai)
library(hoopR)

set.seed(1234)

We’ll continue to use what we’ve done for feature engineering – a rolling window of points per
possession for team and opponent. You should be quite familiar with this by now.

teamgames <- load_mbb_team_box(seasons = 2015:2024)

teamstats <- teamgames |>
mutate(

possessions = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
ppp = team_score/possessions,
oppp = opponent_team_score/possessions

)
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rollingteamstats <- teamstats |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_rolling_ppp = rollmean(lag(ppp, n=1), k=5, align="right", fill=NA),
team_rolling_oppp = rollmean(lag(oppp, n=1), k=5, align="right", fill=NA)
) |>

ungroup()

team_side <- rollingteamstats |>
select(

game_id,
team_id,
team_short_display_name,
opponent_team_id,
game_date,
season,
team_score,
team_rolling_ppp,
team_rolling_oppp
)

opponent_side <- team_side |>
select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_short_display_name = team_short_display_name,
opponent_score = team_score,
opponent_rolling_ppp = team_rolling_ppp,
opponent_rolling_oppp = team_rolling_oppp

) |>
mutate(opponent_id = as.numeric(opponent_team_id)

)

games <- team_side |> inner_join(opponent_side)

games <- games |> mutate(
team_result = as.factor(case_when(

team_score > opponent_score ~ "W",
opponent_score > team_score ~ "L"

)))
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games$team_result <- relevel(games$team_result, ref="W")

modelgames <- games |>
select(

game_id,
game_date,
team_short_display_name,
opponent_short_display_name,
season,
team_rolling_ppp,
team_rolling_oppp,
opponent_rolling_ppp,
opponent_rolling_oppp,
team_result
) |>

na.omit()

We’re going to go through the steps of modeling again, starting with splitting our modelgames
data.

7.0.1 Exercise 1: setting up your data

game_split <- initial_split(modelgames, prop = .8)
game_train <- training(????_?????)
game_test <- testing(????_?????)

The recipe we’ll create is the same for both, so we’ll use it three times.

7.0.2 Exercise 2: setting up the receipe

So what data are we feeding into our recipe?

game_recipe <-
recipe(????_?????? ~ ., data = game_train) %>%
update_role(game_id, game_date, team_short_display_name, opponent_short_display_name, season, new_role = "ID") %>%
step_normalize(all_predictors())

summary(game_recipe)
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# A tibble: 10 x 4
variable type role source
<chr> <list> <chr> <chr>

1 game_id <chr [2]> ID original
2 game_date <chr [1]> ID original
3 team_short_display_name <chr [3]> ID original
4 opponent_short_display_name <chr [3]> ID original
5 season <chr [2]> ID original
6 team_rolling_ppp <chr [2]> predictor original
7 team_rolling_oppp <chr [2]> predictor original
8 opponent_rolling_ppp <chr [2]> predictor original
9 opponent_rolling_oppp <chr [2]> predictor original
10 team_result <chr [3]> outcome original

Now, we’re going to create three different model specifications. The first will be the logistic
regression model definition, the second will be the lightgbm, the third is the svm.

log_mod <-
logistic_reg() %>%
set_engine("glm") %>%
set_mode("classification")

lightgbm_mod <-
boost_tree() %>%
set_engine("lightgbm") %>%
set_mode(mode = "classification")

svm_mod <-
svm_poly() %>%
set_engine("kernlab") %>%
set_mode("classification")

Now we have enough for our workflows. We have three models and one recipe.

7.0.3 Exercise 3: making workflows

log_workflow <-
workflow() %>%
add_model(???_mod) %>%
add_recipe(????_recipe)
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lightgbm_workflow <-
workflow() %>%
add_model(light???_mod) %>%
add_recipe(game_recipe)

svm_workflow <-
workflow() %>%
add_model(svm_mod) %>%
add_recipe(????_??????)

Now we can fit our models to the data.

7.0.4 Exercise 4: fitting our models

log_fit <-
log_workflow %>%
fit(data = ????_?????)

lightgbm_fit <-
lightgbm_workflow %>%
fit(data = ????_?????)

svm_fit <-
svm_workflow %>%
fit(data = ????_?????)

Setting default kernel parameters

7.1 Prediction time

Now we can bind our predictions to the training data and see how we did.

logpredict <- log_fit %>% predict(new_data = game_train) %>%
bind_cols(game_train)

logpredict <- log_fit %>% predict(new_data = game_train, type="prob") %>%
bind_cols(logpredict)

lightgbmpredict <- lightgbm_fit %>% predict(new_data = game_train) %>%
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bind_cols(game_train)

lightgbmpredict <- lightgbm_fit %>% predict(new_data = game_train, type="prob") %>%
bind_cols(lightgbmpredict)

svmpredict <- svm_fit %>% predict(new_data = game_train) %>%
bind_cols(game_train)

svmpredict <- svm_fit %>% predict(new_data = game_train, type="prob") %>%
bind_cols(svmpredict)

Now, how did we do?

7.1.1 Exercise 5: The first metrics

What prediction dataset do we feed into our metrics? Let’s look first at the lightGBM.

metrics(?????????, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.655
2 kap binary 0.310

And now the SVM.

7.1.2 Exercise 6: SVM metrics

metrics(???predict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.639
2 kap binary 0.278

64



Looks like the LightGBM did a little better than the SVM on training. But remember: Where
a model makes its money is in data that it has never seen before.

First, we look at lightGBM.

lightgbmtestpredict <- lightgbm_fit %>% predict(new_data = game_test) %>%
bind_cols(game_test)

lightgbmtestpredict <- lightgbm_fit %>% predict(new_data = game_test, type="prob") %>%
bind_cols(lightgbmtestpredict)

metrics(lightgbmtestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.633
2 kap binary 0.267

Right at 63 percent. And now SVM.

svmtestpredict <- svm_fit %>% predict(new_data = game_test) %>%
bind_cols(game_test)

svmtestpredict <- svm_fit %>% predict(new_data = game_test, type="prob") %>%
bind_cols(svmtestpredict)

metrics(svmtestpredict, team_result, .pred_class)

# A tibble: 2 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 accuracy binary 0.636
2 kap binary 0.272

Slightly better – very slightly. But it shows that SVM is a bit more robust to new data than
the lightGBM.

65



8 Making predictions with new games

And we’ve arrived at tournament time. Now we’re going to take all this modeling and apply
it to new games. To do this, it takes a few extra steps that only make sense after you’ve done
them.

Those steps are:

1. We’re going to build our models the way we have been doing so all along. We need a one
game lag to mimic not knowing the stats before the game. But now that we’ve worked
with them this much, we should have an idea of what model works best for us, so we’re
only going to do that one model. We don’t need multiple. We’ll stop at the fit.

2. After we have a fit, we have to redo our feature engineering but this time without all the
lags. We’re now at a point where the data we have is what we need. No more shifting it
back one game because we’re officially in the future.

3. The, we have to go through a process of joining to get the two teams we need for a
particular matchup.

4. Once we have our games, we can apply the fit to them and get a prediction.

It seems like a lot, and in terms of lines of code, it is. But it’s really a lot of copy paste work.
Let’s get started.

library(tidyverse)
library(tidymodels)
library(zoo)
library(bonsai)
library(hoopR)

set.seed(1234)

We’ll continue to use what we’ve done for feature engineering – a rolling window of points per
possession for team and opponent. You should be quite familiar with this by now.

teamgames <- load_mbb_team_box(seasons = 2015:2024)

teamstats <- teamgames |>
mutate(
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possessions = field_goals_attempted - offensive_rebounds + turnovers + (.475 * free_throws_attempted),
ppp = team_score/possessions,
oppp = opponent_team_score/possessions

)

rollingteamstats <- teamstats |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_rolling_ppp = rollmean(lag(ppp, n=1), k=5, align="right", fill=NA),
team_rolling_oppp = rollmean(lag(oppp, n=1), k=5, align="right", fill=NA)
) |>

ungroup()

team_side <- rollingteamstats |>
select(

game_id,
team_id,
team_short_display_name,
opponent_team_id,
game_date,
season,
team_score,
team_rolling_ppp,
team_rolling_oppp
)

opponent_side <- team_side |>
select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_short_display_name = team_short_display_name,
opponent_score = team_score,
opponent_rolling_ppp = team_rolling_ppp,
opponent_rolling_oppp = team_rolling_oppp

) |>
mutate(opponent_id = as.numeric(opponent_team_id)

)

games <- team_side |> inner_join(opponent_side)
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games <- games |> mutate(
team_result = as.factor(case_when(

team_score > opponent_score ~ "W",
opponent_score > team_score ~ "L"

)))

games$team_result <- relevel(games$team_result, ref="W")

modelgames <- games |>
select(

game_id,
game_date,
team_short_display_name,
opponent_short_display_name,
season,
team_rolling_ppp,
team_rolling_oppp,
opponent_rolling_ppp,
opponent_rolling_oppp,
team_result
) |>

na.omit()

We’re going to go through the steps of modeling again, starting with splitting our modelgames
data and going all the way down to the fit. For your notebooks, you only need one model and
one fit, so it’s time to clean it all up.

game_split <- initial_split(modelgames, prop = .8)
game_train <- training(game_split)
game_test <- testing(game_split)

game_recipe <-
recipe(team_result ~ ., data = game_train) |>
update_role(game_id, game_date, team_short_display_name, opponent_short_display_name, season, new_role = "ID") |>
step_normalize(all_predictors())

svm_mod <-
svm_poly() |>
set_engine("kernlab") |>
set_mode("classification")

68



svm_workflow <-
workflow() |>
add_model(svm_mod) |>
add_recipe(game_recipe)

svm_fit <-
svm_workflow |>
fit(data = game_train)

Setting default kernel parameters

8.1 Redoing the feature engineering

Now that we have our fit based on known data, we need to redo our feature engineering so
that we now have up to the moment data. You get that by just simply removing the lags.
Make sure you remove the lag( parts AND the n=1) parts both.

rollingteamstats <- teamstats |>
group_by(team_short_display_name, season) |>
arrange(game_date) |>
mutate(

team_rolling_ppp = rollmean(ppp, k=5, align="right", fill=NA),
team_rolling_oppp = rollmean(oppp, k=5, align="right", fill=NA),
) |>

ungroup()

team_side <- rollingteamstats |>
select(

game_id,
team_id,
team_short_display_name,
opponent_team_id,
game_date,
season,
team_score,
team_rolling_ppp,
team_rolling_oppp
)

opponent_side <- team_side |>
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select(-opponent_team_id) |>
rename(

opponent_team_id = team_id,
opponent_short_display_name = team_short_display_name,
opponent_score = team_score,
opponent_rolling_ppp = team_rolling_ppp,
opponent_rolling_oppp = team_rolling_oppp

) |>
mutate(opponent_id = as.numeric(opponent_team_id)

)

games <- team_side |> inner_join(opponent_side)

Joining with `by = join_by(game_id, opponent_team_id, game_date, season)`

games <- games |> mutate(
team_result = as.factor(case_when(

team_score > opponent_score ~ "W",
opponent_score > team_score ~ "L"

)))

games$team_result <- relevel(games$team_result, ref="W")

modelgames <- games |>
select(

game_id,
game_date,
team_short_display_name,
opponent_short_display_name,
season,
team_rolling_ppp,
team_rolling_oppp,
opponent_rolling_ppp,
opponent_rolling_oppp,
team_result
) |>

na.omit()

Now we need to get the first games. Let’s start with the first round of last seaons’s Big
Ten Tournament – we’ll pretend it’s happening today and the results are the same. To do
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this, we’re first going to make a tibble with the teams in the team_short_display_name and
opponnent_short_display_name.

round1games <- tibble(
team_short_display_name="Ohio State",
opponent_short_display_name="Wisconsin"

) |> add_row(
team_short_display_name="Minnesota",
opponent_short_display_name="Nebraska"

)

Now with that, we need to get all the team data for our game and join it to our round 1 games.
This will get the latest information, drop the team_result and all the opponent information
and then add it to our round1games dataframe. Then it will do it again, but this time for the
opponent side of the game.

round1games <- modelgames |>
group_by(team_short_display_name) |>
filter(game_date == max(game_date) & season == 2024) |>
ungroup() |>
select(-team_result, -starts_with("opponent")) |>
right_join(round1games)

Joining with `by = join_by(team_short_display_name)`

round1games <- modelgames |>
group_by(opponent_short_display_name) |>
filter(game_date == max(game_date) & season == 2024) |>
ungroup() |>
select(-team_result, -starts_with("team"), -game_id, -game_date, -season) |>
right_join(round1games)

Joining with `by = join_by(opponent_short_display_name)`

Now, just like before, we apply our fits. The select at the end is just to move the right stuff
up to the front of the table and make it easy for us to see what we need to see.

And who does our model think will win the first round?
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round1 <- svm_fit |> predict(new_data = round1games) |>
bind_cols(round1games) |> select(.pred_class, team_short_display_name, opponent_short_display_name, everything())

round1 <- svm_fit |> predict(new_data = round1games, type="prob") |>
bind_cols(round1) |> select(.pred_class, .pred_W, .pred_L, team_short_display_name, opponent_short_display_name, everything())

round1

# A tibble: 2 x 12
.pred_class .pred_W .pred_L team_short_display_name opponent_short_display_n~1
<fct> <dbl> <dbl> <chr> <chr>

1 L 0.321 0.679 Ohio State Wisconsin
2 W 0.516 0.484 Minnesota Nebraska
# i abbreviated name: 1: opponent_short_display_name
# i 7 more variables: opponent_rolling_ppp <dbl>, opponent_rolling_oppp <dbl>,
# game_id <int>, game_date <date>, season <int>, team_rolling_ppp <dbl>,
# team_rolling_oppp <dbl>
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9 Using linear regression to predict a number

9.1 The basics

Linear models are something you’ve understood since you took middle school math and learned
the equation of a line. Remember y = mx + b? It’s back. And, unlike what you complained
bitterly in middle school, it’s very, very useful.

What a linear model says, in words is that we can predict y if we multiply a value – a
coefficient – by our x value offset with b, which is really the y-intercept, but think of it like
where the line starts. Or, expressed as y = mx + b: points = true_shooting_percentage *
? + some starting point. Think of some starting point as what the score should be if the
true_shooting_percentage is zero. Should be zero, right? Intuitively, yes, but it won’t always
work out so easily.

What we’re trying to do here is predict how many fantasy points a player should score given
their draft position (and later other stats). For this, we’ll look at wide receivers, and we’re
going to build a model based on the past 10 draft classes.

9.2 Feature engineering

First we’ll need libraries. You might need to install corrr with install.packages("corrr")
run in your console.

library(tidyverse)
library(tidymodels)
library(corrr)

And we’ll need some data. In this case, we’ve got draft data from cfbfastR and fantasy data
from Pro-Football Reference.

fantasy <- read_csv("https://mattwaite.github.io/sportsdatafiles/fantasyfootball20132022.csv")

wr <- read_csv("https://mattwaite.github.io/sportsdatafiles/wr20132022.csv")
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wrdrafted <- wr |>
inner_join(fantasy, by=c("name"="Player", "year"="Season"))

That leaves us with a dataframe of 263 observations – drafted wide receivers with their fantasy
stats attached to them.

Let’s thin the herd here a bit and just get our selected stats for modeling. We’re really just
going to have a handful of things: name, year, their college team and the team that drafted
them, their overall draft number, their pre-draft grade from ESPN and the number of fantasy
points they scored in their first year in the league.

wrselected <- wrdrafted |>
select(

name,
year,
college_team,
nfl_team,
overall,
pre_draft_grade,
FantPt

)

9.3 Setting up the modeling process

With most modeling tasks we need to start with setting a random number seed to aid our
random splitting of data into training and testing.

set.seed(1234)

Random numbers play a large role in a lot of data science algorithms, so setting one helps our
reproducibility.

After that, we split our data. There’s a number of ways to do this – R has a bunch and you’ll
find all kinds of examples online – but Tidymodels has made this easy.

player_split <- initial_split(wrselected, prop = .8)

player_train <- training(player_split)
player_test <- testing(player_split)
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Let’s start with a simple linear regression with one variable. We’re just going to use the overall
draft position to predict fantasy points. How well does the draft pick do that? are top picks
big point getters and low picks low point scorers? Is there a pattern?

A lot of what comes next is familiar to you. We’re going to make a model, make a fit, then
add the results to our training data and see where that gets us. The fit is made up of the
FantPt and overall divided by a ~, which can be verbalized as “is approximately modeled by.”
So FantPt is approximately modeled by overall.

Our metrics, though will say new things.

9.3.1 Exercise 1: Your first fit

lm_model <- linear_reg() |>
set_engine("lm")

fit_lm <- lm_model |>
fit(?????? ~ ???????, data = player_train)

We can look now at the pieces of the equation of a line here.

tidy(fit_lm, conf.int = TRUE)

# A tibble: 2 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 89.8 5.48 16.4 4.10e-38 79.0 101.
2 overall -0.365 0.0426 -8.57 3.58e-15 -0.449 -0.281

The two most important things to see here are the terms and the estimates. Start with overall.
What that says is for every pick in the draft, a player should score about a third of a fantasy
point less than the previous pick. So the first pick scores -.3, the second pick scores -.6 and so
on. So the higher the pick, the lower the number. Thus our slope.

HOWEVER, the intercept has something to say about this. What the intercept says is that
players start with about 87 fantasy points. The slope then adjusts them downwards each pick
they go.

Think again about y = mx + b. We have our terms here: y is fantasy points, m is -.3 x the
pick number and b is 87. Let’s pretend for a minute that you were drafted with the 10th pick.
That would mean, on the slope, you’re down 3 points, so -3 + 87 is 84. Our model would
predict the 10th pick of the draft, if they were a wide receiver, would score 84 fantasy points
in their rookie season.
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9.3.2 Exercise 2: What is the truth?

That sounds good, but how good is our model?

trainresults <- player_train |>
bind_cols(predict(fit_lm, player_train))

metrics(trainresults, truth = ??????, estimate = .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 41.8
2 rsq standard 0.280
3 mae standard 32.9

Our first step in evaluating a linear model is to get the r-squared value. The yardstick library
(part of Tidymodels) does this nicely. We tell it to produce metrics on a dataset, and we
have to tell it what the real world result is (the truth column) and what the estimate column
is (.pred).

We have two numbers we’re going to focus on – rsq or r squared, and rmse or root mean
squared error. R squared is the amount that changes in overall predict changes in fantasy
points. You can read it as a percentage. So changes in overall draft position account for about
28 percent of the change in fantasy points. Not great, but we’re just starting.

The rmse is how off your predictions are on average. In this case, our fantasy point prediction
is off by 40 (plus or minus) on average. Given that we started with 87, that’s also not great.

9.3.3 Exercise 3: How does it fare?

We need to make those numbers smaller. But first, we should see how it does with test data.

testresults <- player_???? |>
bind_cols(predict(fit_lm, player_????))

metrics(testresults, truth = FantPt, estimate = .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
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1 rmse standard 41.4
2 rsq standard 0.291
3 mae standard 31.4

Our r squared is up a bit, but so is our rmse. So we didn’t change all much, which is good.
That means our model is robust to new data.

9.4 Multiple regression

The problem with simple regressions? They’re simple. Anyone who has watched a sport knows
there’s a lot more to the outcome than just one number.

Enter the multiple regression.

Multiple regressions are a step toward reality – where more than one thing influences the
outcome. However, the more variance we attempt to explain, the more error and uncertainty
we introduce into our model.

To add a variable to your regression model to make a multiple regression model, you simply
use + and add it in. Let’s add pre_draft_grade.

9.4.1 Exercise 4: Adding another variable

lm_model <- linear_reg() |>
set_engine("lm")

fit_lm <- lm_model |>
fit(FantPt ~ overall + ???_?????_?????, data = player_train)

Let’s look at the pieces of the equation of a line again.

tidy(fit_lm, conf.int = TRUE)

# A tibble: 3 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 56.8 27.4 2.07 0.0398 2.68 111.
2 overall -0.302 0.0756 -3.99 0.0000953 -0.451 -0.153
3 pre_draft_grade 0.369 0.294 1.25 0.212 -0.212 0.950
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So our intercept is five points lower. Our overall estimate is about the same – each pick
lowers the fantasy point expectation – but the pre_draft_grade now adds five tenths of a
point for each point of pre-draft grade.

How does that impact our draft model?

trainresults <- player_train |>
bind_cols(predict(fit_lm, player_train))

metrics(trainresults, truth = FantPt, estimate = .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 41.9
2 rsq standard 0.287
3 mae standard 32.7

Huh. Our r squared is almost unchanged and our rmse is up. What gives?

There are multiple ways to find the right combination of inputs to your models. With multiple
regressions, the most common is the correlation matrix. We’re looking to maximize r-squared
by choosing inputs that are highly correlated to our target value, but not correlated with
other things. Example: We can assume that overall draft pick and pre-draft grade are highly
correlated to fantasy points, but the problem lies in if they are highly correlated to each other.
If so, we’re just adding error and not getting any new predictive value.

Using corrr, we can create a correlation matrix in a dataframe to find columns that are highly
correlated with our target – FantPt. To do this, we need to select the columns we’re working
with – overall and pre_draft_grade.

wrselected |>
select(FantPt, overall, pre_draft_grade) |>
correlate()

# A tibble: 3 x 4
term FantPt overall pre_draft_grade
<chr> <dbl> <dbl> <dbl>

1 FantPt NA -0.532 0.451
2 overall -0.532 NA -0.814
3 pre_draft_grade 0.451 -0.814 NA
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Reading this when you have a lot of numbers can be a lot, and it helps to take some notes as
you go.

You read up and down and left and right – it’s a matrix. Follow the FantPt row across to the
overall column and you’ll see they’re about 50 percent negatively correlated – -1 is a perfect
negative correlation. Now look to the right to pre_draft_grade. They’re almost the same –
but this time it’s about 45 percent positively correlated.

Now look at the overall column, and go down to the pre_draft_grade. The correlation: -
0.8141840. Remember that a -1 is a perfect negative corelation. For every 1 one goes up, the
other goes down 1. That’s really close to -1.

What does that mean? It means including both is going to just add error without adding
much value. They’re so similar. You pick the one that is more highly correlated with fantasy
points – overall pick.
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10 Random forests to predict a number

10.1 The basics

And now we return to decision trees and random forests. Recall that tree-based algorithms
are based on decision trees, which are very easy to understand. A random forest is, as the
name implies, a large number of decision trees, and they use a random choice of inputs at each
fork in the tree. The algorithm creates a large number of randomly selected training inputs,
and randomly chooses the feature input for each branch, creating predictions. The goal is to
create uncorrelated forests of trees. The trees all make predictions, and the wisdom of the
crowds takes over.

This time, we’re going to clean up our code a bit and make it more like we are accustomed to
with our previous work, where we’ll make recipes and workflows.

As always, we start with libraries.

library(tidyverse)
library(tidymodels)

set.seed(1234)

And we’ll need some data. We’ll use our draft data from cfbfastR and fantasy data from
Pro-Football Reference.

fantasy <- read_csv("https://mattwaite.github.io/sportsdatafiles/fantasyfootball20132022.csv")

wr <- read_csv("https://mattwaite.github.io/sportsdatafiles/wr20132022.csv")

wrdrafted <- wr |>
inner_join(fantasy, by=c("name"="Player", "year"="Season"))

And again we have a dataframe of 263 observations – drafted wide receivers with their fantasy
stats attached to them.

Let’s narrow that down to just our columns we need:
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wrselected <- wrdrafted |>
select(

name,
year,
college_team,
nfl_team,
overall,
pre_draft_grade,
FantPt

) |> na.omit()

Before we get to the recipe, let’s split our data.

player_split <- initial_split(wrselected, prop = .8)

player_train <- training(player_split)
player_test <- testing(player_split)

Now we’re ready to start.

10.1.1 Exercise 1: What data are we feeding the recipe?

player_recipe <-
recipe(FantPt ~ ., data = player_?????) |>
update_role(name, year, college_team, nfl_team, new_role = "ID")

summary(player_recipe)

# A tibble: 7 x 4
variable type role source
<chr> <list> <chr> <chr>

1 name <chr [3]> ID original
2 year <chr [2]> ID original
3 college_team <chr [3]> ID original
4 nfl_team <chr [3]> ID original
5 overall <chr [2]> predictor original
6 pre_draft_grade <chr [2]> predictor original
7 FantPt <chr [2]> outcome original

Now, we’re going to create two different model specifications. The first will be the linear
regression model definition and the second will be the random forest.
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linear_mod <-
linear_reg() |>
set_engine("lm") |>
set_mode("regression")

rf_mod <-
rand_forest() |>
set_engine("ranger") |>
set_mode("regression")

Now we have enough for our workflows. We have two models and one recipe.

10.1.2 Exercise 2: making workflows

linear_workflow <-
workflow() |>
add_model(??????_mod) |>
add_recipe(???????_recipe)

rf_workflow <-
workflow() |>
add_model(??_mod) |>
add_recipe(??????_recipe)

Now we can fit our models to the data.

10.1.3 Exercise 3: fitting our models

linear_fit <-
linear_workflow |>
fit(data = ????_?????)

rf_fit <-
rf_workflow |>
fit(data = ????_?????)

Now we can bind our predictions to the training data and see how we did.
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linearpredict <-
linear_fit |>
predict(new_data = player_train) |>
bind_cols(player_train)

rfpredict <-
rf_fit |>
predict(new_data = player_train) |>
bind_cols(player_train)

Now, how did we do? First, let’s look at the linear regression.

10.1.4 Exercise 4: The first metrics

What prediction dataset do we feed into our metrics?

metrics(?????????????, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 40.9
2 rsq standard 0.316
3 mae standard 31.5

Same as last time. An r squared in the high 20s, an rmse in the 40s. Nothing to write home
about. How did the random forest do?

10.1.5 Exercise 5: Random forest metrics

metrics(??predict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 22.6
2 rsq standard 0.812
3 mae standard 17.2
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Hopefully you learned your lesson the last time we did random forests – they have a habit of
bringing up your hopes on training only to dash them on testing, especially when you have
two highly correlated values.

Is that what happened here?

rftestpredict <-
rf_fit |>
predict(new_data = player_test) |>
bind_cols(player_test)

metrics(rftestpredict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 49.3
2 rsq standard 0.157
3 mae standard 38.2

Indeed.

Safe to say we’ve reached the limits of overall draft pick and pre-draft grades for predictive
value. Time to add more.
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11 XGBoost for regression

11.1 The basics

And now we return to XGBoost, but now for regression. Recall that boosting methods are
another wrinkle in the tree based methods. Instead of deep trees, boosting methods intention-
ally pick shallow trees – called stumps – that, at least initially, do a poor job of predicting
the outcome. Then, each subsequent stump takes the job the previous one did, optimizes to
reduce the residuals – the gap between prediction and reality – and makes a prediction. And
then the next one does the same, and so on and so on.

So far, our linear regression and random forest methods aren’t that great. Does XGBoost,
with it’s method of optimizing for reduced error, fare any better? Let’s try, but this time
we’re going to add more information. We’re going to add college receiving stats.

As always, we start with libraries.

library(tidyverse)
library(tidymodels)

set.seed(1234)

We’re going to load a new data file this time. It’s called wrdraftedstats and it now has wide
receivers who were drafted, their fantasy stats, and their college career stats.

wrdraftedstats <- read_csv("https://mattwaite.github.io/sportsdatafiles/wrdraftedstats20132022.csv")

Let’s narrow that down to just our columns we need. We’re going to add total_yards and
total_touchdowns to our data to see what happens to our predictions.

wrselected <- wrdraftedstats %>%
select(

name,
year,
college_team,
nfl_team,
overall,
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total_yards,
total_touchdowns,
FantPt

) %>% na.omit()

Before we get to the recipe, let’s split our data.

player_split <- initial_split(wrselected, prop = .8)

player_train <- training(player_split)
player_test <- testing(player_split)

11.2 Implementing XGBoost

Our player recipe will remain unchanged because we’re using the . notation to mean “every-
thing that isn’t an ID or a predictor.”

player_recipe <-
recipe(FantPt ~ ., data = player_train) %>%
update_role(name, year, college_team, nfl_team, new_role = "ID")

summary(player_recipe)

# A tibble: 8 x 4
variable type role source
<chr> <chr> <chr> <chr>

1 name nominal ID original
2 year numeric ID original
3 college_team nominal ID original
4 nfl_team nominal ID original
5 overall numeric predictor original
6 total_yards numeric predictor original
7 total_touchdowns numeric predictor original
8 FantPt numeric outcome original

Our prediction will use the overall draft pick, their total yards in college and their total
touchdowns in college. Does that predict Fantasy points better? Let’s implement multiple
models side by side.
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linear_mod <-
linear_reg() %>%
set_engine("lm") %>%
set_mode("regression")

rf_mod <-
rand_forest() %>%
set_engine("ranger") %>%
set_mode("regression")

xg_mod <- boost_tree(
trees = tune(),
learn_rate = tune(),
tree_depth = tune(),
min_n = tune(),
loss_reduction = tune(),
sample_size = tune(),
mtry = tune(),
) %>%
set_mode("regression") %>%
set_engine("xgboost")

Now to create workflows.

linear_workflow <-
workflow() %>%
add_model(linear_mod) %>%
add_recipe(player_recipe)

rf_workflow <-
workflow() %>%
add_model(rf_mod) %>%
add_recipe(player_recipe)

xg_workflow <-
workflow() %>%
add_model(xg_mod) %>%
add_recipe(player_recipe)

Now to tune the XGBoost model.
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xgb_grid <- grid_latin_hypercube(
trees(),
tree_depth(),
min_n(),
loss_reduction(),
sample_size = sample_prop(),
finalize(mtry(), player_train),
learn_rate()

)

player_folds <- vfold_cv(player_train)

xgb_res <- tune_grid(
xg_workflow,
resamples = player_folds,
grid = xgb_grid,
control = control_grid(save_pred = TRUE)

)

best_rmse <- select_best(xgb_res, "rmse")

final_xgb <- finalize_workflow(
xg_workflow,
best_rmse

)

Because there’s not a ton of data here, this goes relatively quickly. Now to create fits.

linear_fit <-
linear_workflow %>%
fit(data = player_train)

rf_fit <-
rf_workflow %>%
fit(data = player_train)

xg_fit <-
final_xgb %>%
fit(data = player_train)

And now to make predictions.
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linearpredict <-
linear_fit %>%
predict(new_data = player_train) %>%
bind_cols(player_train)

rfpredict <-
rf_fit %>%
predict(new_data = player_train) %>%
bind_cols(player_train)

xgpredict <-
xg_fit %>%
predict(new_data = player_train) %>%
bind_cols(player_train)

For your assignment: Interpret the metrics output of each. Compare them. How does each
model do relative to each other?

metrics(linearpredict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 43.6
2 rsq standard 0.279
3 mae standard 34.2

metrics(rfpredict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 24.6
2 rsq standard 0.839
3 mae standard 18.5

metrics(xgpredict, FantPt, .pred)

# A tibble: 3 x 3
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.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 38.1
2 rsq standard 0.455
3 mae standard 28.6

For your assignment: Implement metrics for test. What happens?
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12 LightGBM for regression

12.1 The basics

Reminder from before: LightGBM is another tree-based method that is similar to XGBoost
but differs in ways that make it computationally more efficient. Where XGBoost and Random
Forests are based on branches, LightGBM grows leaf-wise. Think of it like this – XGBoost uses
lots of short trees with branches – it comes to a fork, makes a decision that reduces the amount
of error the last tree got, and makes a new branch. LightGBM on the other hand, makes new
leaves of each branch, which can mean lots of little splits, instead of big ones. That can lead
to over-fitting on small datasets, but it also means it’s much faster than XGBoost.

Did you catch that bold part? LightGBM is prone to overfitting on small datasets. Our
dataset is small.

LightGBM also uses histograms of the data to make choices, where XGBoost is comptutation-
ally optimizing those choices. Roughly translated – LightGBM is looking at the fat part of a
normal distribution to make choices, where XGBoost is tuning parameters to find the optimal
path forward. It’s another reason why LightGBM is faster, but also not reliable with small
datasets.

What changes from before to now? Very little. Just the output – we’re predicting a number
this time, not a category.

Let’s implement a LightGBM model. We start with libraries.

library(tidyverse)
library(tidymodels)
library(bonsai)

set.seed(1234)

We’ll use the same data – wide receivers with college stats, draft information and fantasy
points.

wrdraftedstats <- read_csv("https://mattwaite.github.io/sportsdatafiles/wrdraftedstats20132022.csv")

We thin up the inputs.
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wrselected <- wrdraftedstats %>%
select(

name,
year,
college_team,
nfl_team,
overall,
total_yards,
total_touchdowns,
FantPt

) %>% na.omit()

And split our data.

player_split <- initial_split(wrselected, prop = .8)

player_train <- training(player_split)
player_test <- testing(player_split)

Now a recipe.

player_recipe <-
recipe(FantPt ~ ., data = player_train) %>%
update_role(name, year, college_team, nfl_team, new_role = "ID")

summary(player_recipe)

# A tibble: 8 x 4
variable type role source
<chr> <chr> <chr> <chr>

1 name nominal ID original
2 year numeric ID original
3 college_team nominal ID original
4 nfl_team nominal ID original
5 overall numeric predictor original
6 total_yards numeric predictor original
7 total_touchdowns numeric predictor original
8 FantPt numeric outcome original
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12.2 Implementing LightGBM

We’re going to implement XGBoost and LightGBM side by side. That will give us the chance
to compare.

We start with model definition.

xg_mod <- boost_tree(
trees = tune(),
learn_rate = tune(),
tree_depth = tune(),
min_n = tune(),
loss_reduction = tune(),
sample_size = tune(),
mtry = tune(),
) %>%
set_mode("regression") %>%
set_engine("xgboost")

lightgbm_mod <-
boost_tree() %>%
set_engine("lightgbm") %>%
set_mode(mode = "regression")

Now we create workflows.

xg_workflow <-
workflow() %>%
add_model(xg_mod) %>%
add_recipe(player_recipe)

lightgbm_workflow <-
workflow() %>%
add_model(lightgbm_mod) %>%
add_recipe(player_recipe)

We’ll tune the XGBoost model.

xgb_grid <- grid_latin_hypercube(
trees(),
tree_depth(),
min_n(),
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loss_reduction(),
sample_size = sample_prop(),
finalize(mtry(), player_train),
learn_rate()

)

player_folds <- vfold_cv(player_train)

xgb_res <- tune_grid(
xg_workflow,
resamples = player_folds,
grid = xgb_grid,
control = control_grid(save_pred = TRUE)

)

best_rmse <- select_best(xgb_res, "rmse")

final_xgb <- finalize_workflow(
xg_workflow,
best_rmse

)

Now we make fits.

xg_fit <-
final_xgb %>%
fit(data = player_train)

lightgbm_fit <-
lightgbm_workflow %>%
fit(data = player_train)

With the fits in hand, we can bind the predictions to the data.

xgpredict <-
xg_fit %>%
predict(new_data = player_train) %>%
bind_cols(player_train)

lightgbmpredict <-
lightgbm_fit %>%
predict(new_data = player_train) %>%
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bind_cols(player_train)

For your assignment: How do these two compare?

metrics(xgpredict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 38.3
2 rsq standard 0.449
3 mae standard 29.2

metrics(lightgbmpredict, FantPt, .pred)

# A tibble: 3 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>

1 rmse standard 31.8
2 rsq standard 0.638
3 mae standard 24.4

For your assignment: How do these models fare in testing?
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