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1 Introduction

If you were at all paying attention in pre-college science classes, you have probably seen this
equation:

d = rt or distance = rate*time

In English, that says we can know how far something has travelled if we know how fast it’s
going and for how long. If we multiply the rate by the time, we’ll get the distance.

If you remember just a bit about algebra, you know we can move these things around. If we
know two of them, we can figure out the third. So, for instance, if we know the distance and
we know the time, we can use algebra to divide the distance by the time to get the rate.

d/t = r or distance/time = rate

In 2012, the South Florida Sun Sentinel found a story in this formula.

People were dying on South Florida tollways in terrible car accidents. What made these
different from other car fatal car accidents that happen every day in the US? Police officers
driving way too fast were causing them.

But do police regularly speed on tollways or were there just a few random and fatal excep-
tions?

Thanks to Florida’s public records laws, the Sun Sentinel got records from the toll transponders
in police cars in south Florida. The transponders recorded when a car went through a given
place. And then it would do it again. And again.

Given that those places are fixed – they’re toll plazas – and they had the time it took to go
from one toll plaza to another, they had the distance and the time.

It took high school algebra to find how fast police officers were driving. And the results were
shocking.

Twenty percent of police officers had exceeded 90 miles per hour on toll roads. In a 13-month
period, officers drove between 90 and 110 mph more than 5,000 times. And these were just
instances found on toll roads. Not all roads have tolls.
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The story was a stunning find, and the newspaper documented case after case of police officers
violating the law and escaping punishment. And, in 2013, they won the Pulitzer Prize for
Public Service.

All with simple high school algebra.

1.1 Modern data journalism

It’s a single word in a single job description, but a Buzzfeed job posting in 2017 is another
indicator in what could be a profound shift in how data journalism is both practiced and
taught.

“We’re looking for someone with a passion for news and a commitment to using data to find
amazing, important stories — both quick hits and deeper analyses that drive conversations,”
the posting seeking a data journalist says. It goes on to list five things BuzzFeed is looking for:
Excellent collaborator, clear writer, deep statistical understanding, knowledge of obtaining
and restructuring data.

And then there’s this:

“You should have a strong command of at least one toolset that (a) allows for
filtering, joining, pivoting, and aggregating tabular data, and (b) enables repro-
ducible workflows.”

This is not the data journalism of 20 years ago. When it started, it was a small group of people
in newsrooms using spreadsheets and databases. Data journalism now encompases program-
ming for all kinds of purposes, product development, user interface design, data visualization
and graphics on top of more traditional skills like analyzing data and writing stories.

In this book, you’ll get a taste of modern data journalism through programming in R, a
statistics language. You’ll be challenged to think programmatically while thinking about a
story you can tell to readers in a way that they’ll want to read. They might seem like two
different sides of the brain – mutually exclusive skills. They aren’t. I’m confident you’ll see
programming is a creative endeavor and storytelling can be analytical.

Combining them together has the power to change policy, expose injustice and deeply inform.

1.2 Installations

This book is all in the R statistical language. To follow along, you’ll do the following:

1. Install the R language on your computer. Go to the R Project website, click download
R and select a mirror closest to your location. Then download the version for your
computer.
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2. Install R Studio Desktop. The free version is great.

Going forward, you’ll see passages like this:

install.packages("tidyverse")

That is code that you’ll need to run in your R Studio. When you see that, you’ll know what
to do.

1.3 About this book

This book is the collection of class materials for the author’s Data Journalism class at the
University of Nebraska-Lincoln’s College of Journalism and Mass Communications. There’s
some things you should know about it:

• It is free for students.
• The topics will remain the same but the text is going to be constantly tinkered with.
• What is the work of the author is copyright Matt Waite 2024.
• The text is Attribution-NonCommercial-ShareAlike 4.0 International Creative Commons

licensed. That means you can share it and change it, but only if you share your changes
with the same license and it cannot be used for commercial purposes. I’m not making
money on this so you can’t either.

• As such, the whole book – authored in Bookdown – is open sourced on Github. Pull
requests welcomed!

1.4 What we’ll cover

• Public records and open data
• R Basics
• Replication
• Data basics and structures
• Aggregates
• Mutating
• Working with dates
• Filters
• Cleaning I: Data smells
• Cleaning II: Janitor
• Cleaning III: Open Refine
• Cleaning IV: Pulling Data from PDFs
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• Joins
• Basic data scraping
• Intermediate data scraping
• Getting data from APIs: Census
• Visualizing for reporting: Basics
• Visualizing for reporting: Publishing
• Geographic data basics
• Geographic queries
• Geographic visualization
• Text analysis basics
• Text analysis
• Advanced analysis: Correlations and regressions
• Advanced analysis: Logistic regression
• Writing with and about data
• Data journalism ethics
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2 Public records

Public records are the lifeblood of investigative reporting. They carry their own philosophical
framework, in a manner of speaking.

• Sunlight is the best disinfectant. Corruption hides in the shadows.
• You paid for it with your taxes. It should be yours (with exceptions).
• Journalism with a capital J is about holding the powerful accountable for their actions.

Keeping those things in mind as you navigate public records is helpful.

2.1 Federal law

Your access to public records and public meetings is a matter of the law. As a journalist, it
is your job to know this law better than most lawyers. Which law applies depends on which
branch of government you are asking.

The Federal Government is covered by the Freedom of Information Act, or FOIA. FOIA is not
a universal term. Do not use it if you are not talking to a federal agency. FOIA is a beacon
of openness to the world. FOIA is deeply flawed and frustrating.

Why?

• There is no real timetable with FOIA. Requests can take months, even years.
• As a journalist, you can ask that your request be expedited.
• Guess what? That requires review. More delays.
• Exemptions are broad. National security, personal privacy, often overused.
• Denied? You can appeal. More delays.

The law was enacted in 1966, but it’s still poorly understood by most federal employees, if not
outright flouted by political appointees. Lawsuits are common.

Post 9/11, the Bush administration rolled back many agency rules. Obama ordered a “pre-
sumption of openness” but followed it with some of the most restrictive policies ever seen. The
Trump Administration, similar to the Obama administration, claims to be the most transpar-
ent administration, but has steadily removed records from open access and broadly denied
access to records.

Result? FOIA is in trouble.
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SPJ is a good resource.

2.2 State law

States are – generally – more open than the federal government. The distance between the
government and the governed is smaller. Some states, like Florida and Texas, are very open.
Others, like Virginia and Pennsylvania, are not.

Nebraska? Somewhere in the middle. Better than some, worse than others.

Under Nebraska law:

• You are entitled to see and copy public records.
• They can charge you a fee for those copies.
• They do not have to give you records in a format different from what they keep them in.

With a written request, Nebraska public officials have four days to respond. If Nebraska
public officials deny your request, they must do so in writing specifying their reasons. If it
will take more than four days, they must tell you, in writing, why and how long it will take.

The Reporters Committee For Freedom of the Press is a good resource.

Please and thank you will get you more records than any lawyer or well written request. When
requesting data, you are going to scare the press office and you are going to confuse the agency
lawyer. Request to have their data person on the phone.

Be. Nice.

Hunting for records is like any other kind of reporting – you have to do research. You have to
ask questions. What records do you keep? For how long?

A good source of info? Records retention schedules, often required by law or administrative
rule at an agency. Nebraska’s is particularly good.

For an example, let’s say we wanted to look at nursing homes in Nebraska, because they’re
closing down quickly. If we just wanted a data set of licensed nursing homes in the state, our
options online are … not good. The Department of Health and Human Services publishes a
list online, but it’s a horribly formatted PDF.

But what does the agency keep? Looking at DHHS’s public health departments records reten-
tion schedule, you’ll find a lot more. And that opens doors for public records requests.
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3 R basics

R is a programming language, one specifically geared toward statistical analysis. Like all pro-
gramming languages, it has certain built-in functions and you can interact with it in multiple
ways. The first, and most basic, is the console.

Think of the console like talking directly to R. It’s direct, but it has some drawbacks and some
quirks we’ll get into later. For now, try typing this into the console and hit enter:

2+2

[1] 4

Congrats, you’ve run some code. It’s not very complex, and you knew the answer before hand,
but you get the idea. We can compute things. We can also store things. In programming
languages, these are called variables. We can assign things to variables using <-. And
then we can do things with them. The <- is a called an assignment operator.

Try this in your console.

number <- 2

number * number
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[1] 4

Now assign a different number to the variable number. Try run number * number again. Get
what you expected?

We can have as many variables as we can name. We can even reuse them (but be careful
you know you’re doing that or you’ll introduce errors). Try this in your console.

firstnumber <- 1
secondnumber <- 2

(firstnumber + secondnumber) * secondnumber

[1] 6

We can store anything in a variable. A whole table. An array of numbers. A single word.
A whole book. All the books of the 18th century. They’re really powerful. We’ll explore them
at length.

3.1 Adding libraries, part 1

The real strength of any given programming language is the external libraries that power it.
The base language can do a lot, but it’s the external libraries that solve many specific problems
– even making the base language easier to use.

For this class, we’re going to need several external libraries.

The first library we’re going to use is called Swirl. So in the console, type install.packages('swirl')
and hit enter. That installs swirl.

Now, to use the library, type library(swirl) and hit enter. That loads swirl. Then type
swirl() and hit enter. Now you’re running swirl. Follow the directions on the screen. When
you are asked, you want to install course 1 R Programming: The basics of programming in R.
Then, when asked, you want to do option 1, R Programming, in that course.

When you are finished with the course – it will take just a few minutes – type 0 to exit (it will
not be clear that’s what you do when you are done).
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3.2 Adding libraries, part 2

We’ll mostly use two libraries for analysis – dplyr and ggplot2. To get them, and several
other useful libraries, we can install a single collection of libraries called the tidyverse. Type
this into your console: install.packages('tidyverse')

NOTE: This is a pattern. You should always install libraries in the console.

Then, to help us with learning and replication, we’re going to use R Notebooks. So we need
to install that library. Type this into your console: install.packages('rmarkdown')
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4 Data journalism in the age of replication

It’s a single word in a single job description, but a Buzzfeed job posting in 2017 is another
indicator in what could be a profound shift in how data journalism is both practiced and
taught.

“We’re looking for someone with a passion for news and a commitment to using data to find
amazing, important stories — both quick hits and deeper analyses that drive conversations,”
the posting seeking a data journalist says. It goes on to list five things BuzzFeed is looking for:
Excellent collaborator, clear writer, deep statistical understanding, knowledge of obtaining
and restructuring data.

And then there’s this:

“You should have a strong command of at least one toolset that (a) allows for
filtering, joining, pivoting, and aggregating tabular data, and (b) enables repro-
ducible workflows.”

The word you’re seeing more and more of? Reproducible. And it started in earnest this
summer when data journalism crossed a major threshold in American journalism: It now has
it’s own section in the Associated Press Stylebook.

“Data journalism has become a staple of reporting across beats and platforms,” the Data
Journalism section of the Stylebook opens. “The ability to analyze quantitative information
and present conclusions in an engaging and accurate way is no longer the domain of specialists
alone.”

The AP’s Data Journalism section discusses how to request data and in what format, guidelines
for scraping data from websites with automation, the ethics of using leaked or hacked data
and other topics long part of data journalism conference talks.

But the third page of the section contains perhaps the most profound commandment: “As
a general rule, all assertions in a story based on data analysis should be repro-
ducible. The methodology description in the story or accompanying materials
should provide a road map to replicate the analysis.”

Reproducible research – replication – is a cornerstone of scientific inquiry. Researchers across
a range of academic disciplines use methods to find new knowledge and publish it in peer
reviewed journals. And, when it works, other researchers take that knowledge and try it with
their own samples in their own locations. Replication studies exist to take something from an
Interesting Finding to a Theory and beyond.
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It doesn’t always work.

Replication studies aren’t funded at nearly the level as new research. And, to the alarm of
many, scores of studies can’t be replicated by others. Researchers across disciplines are finding
that when their original studies are replicated, flaws are found, or the effects found aren’t as
strong as the original. Because of this, academics across a number of disciplines have written
about a replication crisis in their respective fields, particularly psychology, social science and
medical research.

In Chapter 1 of the New Precision Journalism, Phil Meyer wrote that “we journalists would
be wrong less often if we adapted to our own use some of the research tools of the social
scientists.”

Meyer would go on to write about how computers pouring over datasets too large to crunch
by hand had changed social science from a discipline with “a few data and a lot of interpre-
tation” into a much more meaningful and powerful area of study. If journalists could become
comfortable with data and some basic statistics, they too could harness this power.

“It used to be said that journalism is history in a hurry,” Meyer wrote. “The argument of this
book is that to cope with the acceleration of social change in today’s world, journalism must
become social science in a hurry.”

He wrote that in 1971. It might as well have been yesterday.

Journalism doesn’t have a history of replication, but the concerns about credibility are substan-
tially greater. Trust in media is at an all time low and shows no signs of improving. While the
politics of the day have quite a bit to do with this mistrust of media, being more transparent
about what journalists do can’t hurt.

The AP’s commandment that Thou Must Replicate Your Findings could, if taken seriously by
the news business, have substantial impacts on how data journalism gets done in newsrooms
and how data journalism gets taught, both at professional conferences and universities.

How? Two ways.

• The predominant way that data journalism gets done in a newsroom is through simple
tools like Microsoft Excel or Google Sheets. Those simple tools, on their own, lack
significant logging functions, meaning journalists will have to maintain detailed logs of
what they did so any analysis can be replicated.

• The predominant way that data journalism gets taught – both in professional settings
and at most universities – doesn’t deal with replication at all. The tools and the training
stress Getting Things Done – an entirely logical focus for a deadline driven business.
The choices of tools – like spreadsheets – are made to get from data to story as quick as
possible, without frightening away math and tech phobic students.
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If the AP’s replication rules are to be followed, journalism needs to become much more serious
about the tools and techniques used to do data journalism. The days of Point and Click tools
to do Quick and Dirty analysis that get published are dying. The days of formal methods
using documented steps are here.

4.1 The stylebook

Troy Thibodeaux, the editor of the AP’s data journalism team, said the stylebook entry started
when the data team found themselves answering the same questions over and over. With a
grant from the Knight Foundation, the team began to document their own standards and turn
that into a stylebook section.

From the beginning, they had a fairly clear idea of what they wanted to do – think through a
project and ask what the frequently asked questions are that came up. It was not going to be
a soup-to-nuts guide to how to do a data project.

When the section came out, eyebrows went up on the replication parts, surprising Thi-
bodeaux.

“From our perspective, this is a core value for us,” he said. “Just for our own benefit, we need
to be able to have someone give us a second set of eyes. We benefit from that every day. We
catch things for each other.”

Thibodeaux said the AP data team has two audiences when it comes to replication – they
have the readers of the work, and members of the collective who may want to do their own
work with the data.

“This is something that’s essential to the way we work,” he said. “And it’s important in terms
of transparency and credibility going forward. We thought it would be kind of unexception-
able.”

4.2 Replication

Meyer, now 86, said he’s delighted to see replication up for discussion now, but warned that
we shouldn’t take it too far.

“Making the analysis replicable was something I worried about from the very beginning,” he
wrote in an email. So much so that in 1967, after publishing stories from his landmark survey
after the Detroit riots, he shipped the data and backup materials about it to a social science
data repository at the University of North Carolina.
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And, in doing so, he opened the door to others replicating his results. One scholar attempted
to find fault with Meyer’s analysis by slicing the data ever thinner until the differences weren’t
significant – gaming the analysis to criticize the stories.

Meyer believes replication is vitally important, but doesn’t believe it should take on the trap-
pings of science replication, where newsrooms take their own samples or re-survey a community.
That would be prohibitively expensive.

But journalists should be sharing their data and analysis steps. And it doesn’t need to be
complicated, he said.

“Replication is a theoretical standard, not a requirement that every investigator duplicate his
or her own work for every project,” he said. “Giving enough information in the report to
enable another investigator to follow in your footsteps is enough. Just telling enough to make
replication possible will build confidence.”

But as simple as that sounds, it’s not so simple. Ask social scientists.

Andrew Gelman, a professor of statistics and political science and director of the Applied
Statistics Center at Columbia University, wrote in the journal CHANCE in February that
difficulties with replication in empirical research are pervasive.

“When an outsider requests data from a published paper, the authors will typically not post
or send their data files and code, but instead will point to their sources, so replicators have to
figure out exactly what to do from there,” Gelman wrote. “End-to-end replicability is not the
norm, even among scholars who actively advocate for the principles of open science.”

So goes science, so goes journalism.

Until a recent set of exceptions, journalists rarely shared data. The “nerd box” – a sidebar
story that explains how a news organization did what they did – is a term that first appeared
on NICAR-L, a email listserv of data journalists, in the 1990s.

It was a form born in print.

As newsrooms adapted to the internet, some news organizations began linking to their data
sources if they were online. Often, the data used in stories were obtained through records
requests. Sometimes, reporters created the data themselves.

Journalism, more explicitly than science, is a competitive business. There have been arguments
that nerd boxes and downloadable links give too much away to competitors.

Enter the AP Stylebook.

The AP Stylebook argues explicitly for both internal and external replication. Externally, they
argue that the “methodology description in the story or accompanying materials
should provide a road map to replicate the analysis”, meaning someone else could do
the replication post publication.
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Internally, the AP Stylebook says: “If at all possible, an editor or another reporter
should attempt to reproduce the results of the analysis and confirm all findings
before publication.”

There are two problems here.

First is that journalism, unlike science, has no history of replication. There is no Scientific
Method for stories. There is no Research Methods class taught at every journalism school,
at least not where it comes to writing stories. And, beyond that, journalism school isn’t a
requirement to get into the news business. In other words, journalism lacks the standards
other disciplines have.

The second problem is, in many ways, worse: Except for the largest newsrooms, most news
organizations lack editors who could replicate the analysis. Many don’t have a second person
who would know what to do.

Not having a second set of eyes in a newsroom is a problem, Thibodeaux acknowledges. Having
a data journalism team “is an incredible luxury” at the AP, he said, and their rule is nothing
goes on the wire without a second set of eyes.

Thibodeaux, for his part, wants to see fewer “lone nerds in the corner” – it’s too much pressure.
That person gets too much credibility from people who don’t understand what they do, and
they get too much blame when a mistake is made.

So what would replication look like in a newsroom? What does this mean for how newsrooms
do data journalism on deadline? And what does this mean for how data journalism is being
taught, particularly at a time when only half of accredited journalism programs teach any data
journalism at all?

Are we walking ourselves into our own replication crisis?

4.3 Goodbye Excel?

For decades, Excel has been the gateway drug for data journalists, the Swiss Army knife of
data tools, the One Tool You Can’t Live Without. Investigative Reporters and Editors, an
organization that trains investigative journalists, have built large amounts of their curricula
around Excel. Of the journalism schools that teach data journalism, most of them begin and
end with spreadsheets.

The Stylebook says at a minimum, today’s data journalists should keep a log that details:

• The source of the data, making sure to work on a copy of the data and not the original
file.

• Data dictionaries or any other supporting documentation of the data.
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• “Description of all steps required to transform the data and perform the
analysis.”

The trouble with Excel is, unless you are keeping meticulous notes on what steps you are
taking, there’s no way to keep track. Many data journalists will copy and paste the values of
a formula over the formula itself to prevent Excel from fouling up cell references when moving
data around – a practical step that also cuts off another path to being able to replicate the
results.

An increasing number of data journalists are switching to tools like analysis notebooks, which
use languages like Python and R, to document their work. The notebooks, generally speaking,
allow a data journalist to mix code and explanation in the same document.

Combined with online sharing tools like GitHub, analysis notebooks seem to solve the problem
of replication. But the number using them is small compared to those using spreadsheets.
Recent examples of news organizations using analysis notebooks include the Los Angeles Times,
the New York Times, FiveThirtyEight, and Buzzfeed.

Peter Aldous, a data journalist at Buzzfeed recently published a story about how the online
news site used machine learning to find airplanes being used to spy on people in American
cities. Published with the story is the code Aldous used to build his case.

“I think of it this way: As a journalist, I don’t like to simply trust what people tell me.
Sometimes sources lie. Sometimes they’re just mistaken. So I like to verify what I’m told,” he
wrote in an email. “By the same token, why should someone reading one of my articles believe
my conclusions, if I don’t provide the evidence that explains how I reached them?”

The methodology document, associated code and source data took Aldous a few hours to
create. The story, from the initial data work through the reporting required to make sense of
it all, took a year. Aldous said there wasn’t a discussion about if the methodology would be
published because it was assumed – “it’s written into our DNA at BuzzFeed News.”

“My background is in science journalism, and before that (way back in the 1980s) in science,”
Aldous said. “In science, there’s been a shift from descriptive methods sections to publishing
data and analysis code for reproducible research. And I think we’re seeing a similar shift in
data journalism. Simply saying what you’ve done is not as powerful as providing the means
for others to repeat and build on your work.”

Thibodeaux said that what Buzzfeed and others do with analysis notebooks and code reposi-
tories that include their data is “lovely.”

“That to me is the shining city on the hill,” Thibodeaux said. “We’re not going to get there,
and I don’t think we have to for every story and every use case, and I don’t think it’s necessarily
practical for every person working with data to get to that point.”

There’s a wide spectrum of approaches that still gets journalists to the essence of what the
stylebook is trying to do, Thibodeaux said. There are many tools, many strategies, and the
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AP isn’t going to advocate for any single one of them, he said. They’re just arguing for
transparency and replicability, even if that means doing more work.

“There’s a certain burden that comes with transparency,” he said. “And I think we have to
accept that burden.”

The question, Thibodeaux said, is what is sufficient? What’s enough transparency? What
does someone need for replicability?

“Maybe we do have to set a higher standard – the more critical the analysis is to the story,
and the more complex that analysis is, that’s going to push the bar on what is a sufficient
methodology statement,” he said. “And it could end up being a whole code repo in order to
just say, this isn’t black magic, here’s how we got it if you’re so interested.”

4.4 “Receptivity … is high”

Though written almost half a century ago, Meyer foresaw how data journalism was going to
arrive in the newsroom.

“For the new methods to gain currency in journalism, two things must happen,” he wrote.
“Editors must feel the need strongly enough to develop the in-house capacity for systematic
research … The second need, of course, is for the editors to be able to find the talent to fill this
need.”

Meyer optimistically wrote that journalism schools were prepared to provide that talent – they
were not then, and only small handful are now – but students were unlikely to be drawn to
these new skills if they didn’t see a chance to use those skills in their careers.

It’s taken 45 years, but we are now at this point.

“The potential for receptivity, especially among the younger generation of newspaper managers,
is high,” Meyer wrote.

4.5 Replication in notebooks

For our purposes in this book, replication requires two things from you, the student: What
and why. What is this piece of code doing, and why are you doing that here and now? What
lead you to this place? That you can copy and paste code from this book or the internet is
not impressive. What is necessary for learning is that you know what a piece of code is doing
a thing and why you want to do that thing here.
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In an R Notebook, there are two blocks: A block that uses markdown, which has no special
notation, and a code block. The code blocks can run mulitple languages inside R Studio, includ-
ing Python, a general purpose scripting language; and SQL, or Structured Query Language,
the language of databases.

For the rest of the class, we’re going to be working in notebooks. In notebooks, you will both
run your code and explain each step, much as I am doing here.

To start a notebook, you click on the green plus in the top left corner and go down to R
Notebook. Do that now.

You will see that the notebook adds a lot of text for you. It tells you how to work in notebooks
– and you should read it. The most important parts are these:

To add text, simply type. To add code you can click on the Insert button on the toolbar or
by pressing Cmd+Option+I on Mac or Ctl+Alt+I on Windows.

Highlight all that text and delete it. You should have a blank document. This document is
called a R Markdown file – it’s a special form of text, one that you can style, and one you can
include R in the middle of it. Markdown is a simple markup format that you can use to create
documents. So first things first, let’s give our notebook a big headline. Add this:

# My awesome notebook

Now, under that, without any markup, just type This is my awesome notebook.

Under that, you can make text bold by writing It is **really** awesome.

If you want it italics, just do this on the next line: No, it's _really_ awesome. I swear.

To see what it looks like without the markup, click the Preview or Knit button in the toolbar.
That will turn your notebook into a webpage, with the formatting included.

Throughout this book, we’re going to use this markdown to explain what we are doing and,
more importantly, why we are doing it. Explaining your thinking is a vital part of understand-
ing what you are doing.
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That explaination, plus the code, is the real power of notebooks. To add a block of code,
follow the instructions from above: click on the Insert button on the toolbar or by pressing
Cmd+Option+I on Mac or Ctl+Alt+I on Windows.

In that window, use some of the code from above and add two numbers together. To see it
run, click the green triangle on the right. That runs the chunk. You should see the answer to
your addition problem.

And that, just that, is the foundation you need to start this book.
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5 Data, structures and types

Data are everywhere (and data is plural of datum, thus the use of are in that statement). It
surrounds you. Every time you use your phone, you are creating data. Lots of it. Your online
life. Any time you buy something. It’s everywhere. News, like life, is no different. Modernity
is drowning in data, and more comes along all the time.

In news, and in this class, we’ll be dealing largely with two kinds of data: event level data
and summary data. It’s not hard to envision event level data. A car accident. A crime. A
fire. They are the events that make up the whole. Combine them together – summarize them
– and you’ll have some notion of how the year went. What we usually see is summary data –
who wants to scroll through 365 days of crime data to figure out if crime was up or down?

To start with, we need to understand the shape of data.

5.1 Rows and columns

Data, oversimplifying it a bit, is information organized. Generally speaking, it’s organized into
rows and columns. Rows, generally, are individual elements. A crime. A county. An accident.
Columns, generally, are components of the data, sometimes called variables. So if each row is
a crime, the first column might be the type. The second is the date and time. The third is
the location. And so on.
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One of the critical components of data analysis, especially for beginners, is having a mental
picture of your data. What does each row mean? What does each column in each row signify?
How many rows do you have? How many columns?

EXERCISE: I love orange Skittles. What are my chances of getting more orange
Skittles than other colors in a fun sized packet? Each person in the class must track
their package and everyone else using a spreadsheet. What differences between
sheets emerge? What similarities?

5.2 Types

There are scores of data types in the world, and R has them. In this class, we’re primarily
going to be dealing with data frames, and each element of our data frames will have a data
type.

Typically, they’ll be one of four types of data:

• Numeric: a number, like the number of car accidents in a year or the number of journalism
majors.

• Character: Text, like a name, a county, a state.
• Date: Fully formed dates – 2019-01-01 – have a special date type. Elements of a date,

like a year (ex. 2019) are not technically dates, so they’ll appear as numeric data types.
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• Logical: Rare(ish), but every now and then we’ll have a data type that’s Yes or No, True
or False, etc.

Question: Is a zip code a number? Is a jersey number a number? Trick question, because
the answer is no. Numbers are things we do math on. If the thing you want is not something
you’re going to do math on – can you add two phone numbers together? – then make it a
character type. If you don’t, most every software system on the planet will drop leading zeros.
For example, every zip code in Boston starts with 0. If you record that as a number, your zip
code will become a four digit number, which isn’t a zip code anymore.

5.3 A simple way to get data

The hardest part of doing data journalism is often getting the data. In news, there’s scores of
organizations and agencies collecting data, and zero standards on how it’s being collected.

If we’re lucky – huge IF in news – the data we want is in a downloadable format. If we’re a
little less lucky, there’s a way to get the data on the web. And maybe that data is in a simple
table. If so, we can pull that data directly into Google Sheets.

The Lincoln Police Department publishes a daily summary of calls. Some days – like when it
snows – that data becomes news. So let’s pretend that it snowed today and we need to see
how many accidents the Lincoln Police responded to and what percentage of their call load
that represents.

Open a browser and go to the LPD’s log page. Now, in a new tab, log into Google Docs/Drive
and open a new spreadsheet. In the first cell of the first row, copy and paste this formula in:

=importHTML("http://cjis.lincoln.ne.gov/~lpd/cfstoday.htm","table",1)

This is function, with three inputs. The function is importHTML and the three inputs in
order are the url of the page, the HTML tag we’re after (a

tag in our case) and the number of the tag you’re after. So our function says go to the LPD
page and get the first table tag you find. Fortunately for us, there’s only one.

If your version worked right, you’ve got the data from that page in a spreadsheet.
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5.4 Cleaning the data

The first thing we need to do is recognize that we don’t have data, really. We have the results
of a formula. You can tell by putting your cursor on that field, where you’ll see the formula
again. This is where you’d look:

The solution is easy:

Edit > Select All or type command/control A Edit > Copy or type command/control C Edit
> Paste Special > Values Only or type command/control shift V

You can verify that it worked by looking in that same row 1 column A, where you’ll see the
formula is gone.
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Now you have data, but look closely. At the bottom of the data, you have the total number
of calls. More often than not, and particularly the deeper into this book we go, you want to
delete that. So click on the number next to that Total Calls line to highlight it and go up to
Edit > Delete Row XX where XX is the row number.

After you’ve done that, you can export it for use in R. Go to File > Download as > Comma
Separated Values.
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6 Aggregates

R is a statistical programming language that is purpose built for data analysis.

Base R does a lot, but there are a mountain of external libraries that do things to make R
better/easier/more fully featured. We already installed the tidyverse – or you should have
if you followed the instructions for the last assignment – which isn’t exactly a library, but a
collection of libraries. Together, they make up the tidyverse. Individually, they are extraordi-
narily useful for what they do. We can load them all at once using the tidyverse name, or we
can load them individually. Let’s start with individually.

The two libraries we are going to need for this assignment are readr and dplyr. The library
readr reads different types of data in. For this assignment, we’re going to read in csv data
or Comma Separated Values data. That’s data that has a comma between each column of
data.

Then we’re going to use dplyr to analyze it.

To use a library, you need to import it. Good practice – one I’m going to insist on – is that
you put all your library steps at the top of your notebooks.

That code looks like this:

library(readr)

To load them both, you need to do this:

library(readr)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag
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The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

But, because those two libraries – and several others that we’re going to use over the course
of this class – are so commonly used, there’s a shortcut to loading all of the libraries we’ll
need:

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

You can keep doing that for as many libraries as you need. I’ve seen notebooks with 10 or
more library imports.

6.1 Importing data

The first thing we need to do is get some data to work with. We do that by reading it in. In
our case, we’re going to read data from a csv file – a comma-separated values file.

The CSV file we’re going to read from is a Nebraska Game and Parks Commission dataset of
confirmed mountain lion sightings in Nebraska. There are, on occasion, fierce debates about
mountain lions and if they should be hunted in Nebraska. This dataset can tell us some
interesting things about that debate.

So step 1 is to import the data. The code looks something like this, but hold off copying it
just yet:

mountainlions <- read_csv("~/Documents/Data/mountainlions.csv")

Let’s unpack that.

The first part – mountainlions – is the name of your variable. A variable is just a name of a
thing. In this case, our variable is a dataframe, which is R’s way of storing data. We can call
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this whatever we want. I always want to name dataframes after what is in it. In this case,
we’re going to import a dataset of mountain lion sightings from the Nebraska Game and Parks
Commission. Variable names, by convention are one word all lower case. You can
end a variable with a number, but you can’t start one with a number.

The <- bit, you’ll recall from the basics, is the variable assignment operator. It’s how we
know we’re assigning something to a word. Think of the arrow as saying “Take everything
on the right of this arrow and stuff it into the thing on the left.” So we’re creating an empty
vessel called mountainlions and stuffing all this data into it.

The read_csv bits are pretty obvious, except for one thing. What happens in the quote marks
is the path to the data. In there, I have to tell R where it will find the data.

The easiest thing to do, if you are confused about how to find your data, is to
put your data in the same folder as as your notebook (you’ll have to save that
notebook first). If you do that, then you just need to put the name of the file in
there (mountainlions.csv).

In my case, the file path I’ve got starts with a ~ character. That’s a shortcut for my home
directory. It’s the same on your computer. Your home directory is where your Documents,
Desktop and Downloads directories are. I’ve got a folder called Documents in my home
directory, and in there is a folder called Data that has the file called mountainlions.csv in it.
Thus, ~/Documents/Data/mountainlions.csv

Some people – insane people – leave the data in their downloads folder. The data path then
would be ~/Downloads/nameofthedatafilehere.csv on PC or Mac.

A quick way to find your data file? The tab key. If you start your code dataframenamehere
<- read_csv(") and after typing the first quote mark you hit tab, it will show you the files
in the folder you are in. With that, you can start to narrow in on where you need to go.

So what you put in your import step will be different from mine. Your first task is
to import the data. Here’s mine. Use the tab key to find your data file and get the correct
path.

mountainlions <- read_csv("data/mountainlions.csv")

Rows: 393 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Cofirm Type, COUNTY, Date
dbl (1): ID

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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Now we can inspect the data we imported. What does it look like? To do that, we use
head(mountainlions) to show the headers and the first six rows of data. If we wanted
to see them all, we could just simply enter mountainlions and run it.

To get the number of records in our dataset, we run nrow(mountainlions)

head(mountainlions)

# A tibble: 6 x 4
ID `Cofirm Type` COUNTY Date

<dbl> <chr> <chr> <chr>
1 1 Track Dawes 9/14/91
2 2 Mortality Sioux 11/10/91
3 3 Mortality Scotts Bluff 4/21/96
4 4 Mortality Sioux 5/9/99
5 5 Mortality Box Butte 9/29/99
6 6 Track Scotts Bluff 11/12/99

nrow(mountainlions)

[1] 393

6.2 Group by and count

So what if we wanted to know how many mountain lion sightings there were in each county?

To do that by hand, we’d have to take each of the 393 records and sort them into a pile. We’d
put them in groups and then count them.

dplyr has a group by function in it that does just this. A massive amount of data analysis
involves grouping like things together and then doing simple things like counting them, or
averaging them together. So it’s a good place to start.

So to do this, we’ll take our dataset and we’ll introduce a new operator: |>. The best way to
read that operator, in my opinion, is to interpret that as “and then do this.”

We’re going to establish a pattern that will come up again and again throughout this book:
data |> function. The first step of every analysis starts with the data being used. Then we
apply functions to the data.

In our case, the pattern that you’ll use many, many times is: data |> group_by(FIELD NAME)
|> summarize(VARIABLE NAME = AGGREGATE FUNCTION(FIELD NAME))
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Here’s the code:

mountainlions |>
group_by(COUNTY) |>
summarise(

total = n()
)

# A tibble: 42 x 2
COUNTY total
<chr> <int>

1 Banner 6
2 Blaine 3
3 Box Butte 4
4 Brown 15
5 Buffalo 3
6 Cedar 1
7 Cherry 30
8 Custer 8
9 Dakota 3
10 Dawes 111
# i 32 more rows

So let’s walk through that. We start with our dataset – mountainlions – and then we tell
it to group the data by a given field in the data. In this case, we wanted to group together
all the counties, signified by the field name COUNTY, which you could get from looking at
head(mountainlions). After we group the data, we need to count them up. In dplyr, we use
summarize which can do more than just count things. Inside the parentheses in summarize,
we set up the summaries we want. In this case, we just want a count of the counties: total
= n(), says create a new field, called total and set it equal to n(), which might look weird,
but it’s common in stats. The number of things in a dataset? Statisticians call in n. There are
n number of incidents in this dataset. So n() is a function that counts the number of things
there are.

And when we run that, we get a list of counties with a count next to them. But it’s not in
any order. So we’ll add another And Then Do This |> and use arrange. Arrange does what
you think it does – it arranges data in order. By default, it’s in ascending order – smallest to
largest. But if we want to know the county with the most mountain lion sightings, we need to
sort it in descending order. That looks like this:

mountainlions |>
group_by(COUNTY) |>
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summarise(
count = n()

) |> arrange(desc(count))

# A tibble: 42 x 2
COUNTY count
<chr> <int>

1 Dawes 111
2 Sioux 52
3 Sheridan 35
4 Cherry 30
5 Scotts Bluff 26
6 Keya Paha 20
7 Brown 15
8 Rock 11
9 Lincoln 10
10 Custer 8
# i 32 more rows

We can, if we want, group by more than one thing. So how are these sightings being confirmed?
To do that, we can group by County and “Cofirm Type”, which is how the state misspelled
Confirm. But note something in this example below:

mountainlions |>
group_by(COUNTY, `Cofirm Type`) |>
summarise(

count = n()
) |> arrange(desc(count))

`summarise()` has grouped output by 'COUNTY'. You can override using the
`.groups` argument.

# A tibble: 93 x 3
# Groups: COUNTY [42]

COUNTY `Cofirm Type` count
<chr> <chr> <int>

1 Dawes Trail Camera Photo 41
2 Sioux Trail Camera Photo 40
3 Dawes Track 19
4 Keya Paha Trail Camera Photo 18
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5 Cherry Trail Camera Photo 17
6 Dawes Mortality 17
7 Sheridan Trail Camera Photo 16
8 Dawes Photo 13
9 Dawes DNA 11
10 Scotts Bluff Trail Camera Photo 11
# i 83 more rows

See it? When you have a field name that has two words, readr wraps it in back ticks, which
is next to the 1 key on your keyboard. You can figure out which fields have back ticks around
it by looking at the output of readr. Pay attention to that, because it’s coming up again in
the next section and will be a part of your homework.

6.3 Other aggregates: Mean and median

In the last example, we grouped some data together and counted it up, but there’s so much
more you can do. You can do multiple measures in a single step as well.

Let’s look at some salary data from the University of Nebraska.

salaries <- read_csv("data/nusalaries1819.csv")

Rows: 13039 Columns: 7
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (4): Employee, Position, Campus, Department
num (3): Budgeted Annual Salary, Salary from State Aided Funds, Salary from ...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(salaries)

# A tibble: 6 x 7
Employee Position Campus Department Budgeted Annual Sala~1
<chr> <chr> <chr> <chr> <dbl>

1 Abbey, Bryce M Associa~ UNK Kinesiolo~ 61276
2 Abbott, Frances M Staff S~ UNL FM&P Faci~ 37318
3 Abboud, Cheryl A Adminis~ UNMC Surgery-U~ 76400
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4 Abdalla, Maher Y Asst Pr~ UNMC Pathology~ 74774
5 Abdelkarim, Ahmed Mohamed A~ Post-Do~ UNMC Surgery-T~ 43516
6 Abdel-Monem, Tarik L Researc~ UNL Public Po~ 58502
# i abbreviated name: 1: `Budgeted Annual Salary`
# i 2 more variables: `Salary from State Aided Funds` <dbl>,
# `Salary from Other Funds` <dbl>

In summarize, we can calculate any number of measures. Here, we’ll use R’s built in mean
and median functions to calculate … well, you get the idea.

salaries |>
summarise(

count = n(),
mean_salary = mean(`Budgeted Annual Salary`),
median_salary = median(`Budgeted Annual Salary`)

)

# A tibble: 1 x 3
count mean_salary median_salary
<int> <dbl> <dbl>

1 13039 62065. 51343

So there’s 13,039 employees in the database, spread across four campuses plus the system
office. The mean or average salary is about $62,000, but the median salary is slightly more
than $51,000.

Why?

Let’s let sort help us.

salaries |> arrange(desc(`Budgeted Annual Salary`))

# A tibble: 13,039 x 7
Employee Position Campus Department Budgeted Annual Sala~1
<chr> <chr> <chr> <chr> <dbl>

1 Frost, Scott A Head Coach-Foo~ UNL Athletics 5000000
2 Miles, Timothy S Head Coach-Bas~ UNL Athletics 2375000
3 Moos, William H Athletic Direc~ UNL Athletics 1000000
4 Gold, Jeffrey P Chancellor UNMC Office of~ 853338
5 Chinander, Erik J Assistant Coac~ UNL Athletics 800000
6 Walters, Troy M Assistant Coac~ UNL Athletics 700000
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7 Cook, John G Head Coach-Vol~ UNL Athletics 675000
8 Williams, Amy M Head Coach-Wom~ UNL Athletics 626750
9 Bounds, Hank M President UNCA Office of~ 540000
10 Austin Jr, Gregory D Assistant Coac~ UNL Athletics 475000
# i 13,029 more rows
# i abbreviated name: 1: `Budgeted Annual Salary`
# i 2 more variables: `Salary from State Aided Funds` <dbl>,
# `Salary from Other Funds` <dbl>

Oh, right. In this dataset, the university pays a football coach $5 million. Extremes influence
averages, not medians, and now you have your answer.

So when choosing a measure of the middle, you have to ask yourself – could I have extremes?
Because a median won’t be sensitive to extremes. It will be the point at which half the numbers
are above and half are below. The average or mean will be a measure of the middle, but if
you have a bunch of low paid people and then one football coach, the average will be wildly
skewed. Here, because there’s so few highly paid football coaches compared to people who
make a normal salary, the number is only slightly skewed in the grand scheme, but skewed
nonetheless.

6.4 Even more aggregates

There’s a ton of things we can do in summarize – we’ll work with more of them as the course
progresses – but here’s a few other questions you can ask.

Which department on campus has the highest wage bill? And what is the highest and lowest
salary in the department? And how wide is the spread between salaries? We can find that
with sum to add up the salaries to get the total wage bill, min to find the minumum salary,
max to find the maximum salary and sd to find the standard deviation in the numbers.

salaries |>
group_by(Campus, Department) |>
summarize(

total = sum(`Budgeted Annual Salary`),
avgsalary = mean(`Budgeted Annual Salary`),
minsalary = min(`Budgeted Annual Salary`),
maxsalary = max(`Budgeted Annual Salary`),
stdev = sd(`Budgeted Annual Salary`)) |> arrange(desc(total))

`summarise()` has grouped output by 'Campus'. You can override using the
`.groups` argument.
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# A tibble: 804 x 7
# Groups: Campus [5]

Campus Department total avgsalary minsalary maxsalary stdev
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

1 UNL Athletics 3.56e7 118508. 12925 5000000 3.33e5
2 UNMC Pathology/Microbiology 1.36e7 63158. 1994 186925 3.41e4
3 UNL Agronomy & Horticulture 8.98e6 66496. 5000 208156 4.01e4
4 UNMC Anesthesiology 7.90e6 78237. 10000 245174 3.59e4
5 UNL School of Natural Resourc~ 6.86e6 65995. 2400 194254 3.28e4
6 UNL College of Law 6.70e6 77953. 1000 326400 7.23e4
7 UNL University Television 6.44e6 55542. 16500 221954 2.75e4
8 UNL University Libraries 6.27e6 51390. 1200 215917 2.68e4
9 UNMC Pharmacology/Exp Neurosci~ 6.24e6 58911. 2118 248139 4.29e4
10 UNMC CON-Omaha Division 6.11e6 78304. 3000 172522 4.48e4
# i 794 more rows

So again, no surprise, the UNL athletic department has the single largest wage bill at nearly $36
million. The average salary in the department is $118,508 – more than double the univeristy
as a whole, again thanks to Scott Frost’s paycheck.
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7 Mutating data

One of the most common data analysis techniques is to look at change over time. The most
common way of comparing change over time is through percent change. The math behind
calculating percent change is very simple, and you should know it off the top of your head.
The easy way to remember it is:

(new - old) / old

Or new minus old divided by old. Your new number minus the old number, the result of which
is divided by the old number. To do that in R, we can use dplyr and mutate to calculate new
metrics in a new field using existing fields of data.

So first we’ll import the tidyverse so we can read in our data and begin to work with it.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Now we’ll import a common and simple dataset of county population estimates from the US
Census Bureau. Each year, the Census Bureau publishes estimates for states and counties.
This one has every county in the US. A common question: who are the winners and losers?

population <- read_csv('data/countypopulations.csv')

Rows: 3142 Columns: 13
-- Column specification --------------------------------------------------------
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Delimiter: ","
chr (2): STNAME, CTYNAME
dbl (11): CENSUS2010POP, ESTIMATESBASE2010, POPESTIMATE2010, POPESTIMATE2011...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

The code to calculate percent change is pretty simple. Remember, with summarize, we used
n() to count things. With mutate, we use very similar syntax to calculate a new value – a
new column of data – using other values in our dataset. So in this case, we’re trying to do
(new-old)/old, but we’re doing it with fields.

If we look at what we got when we imported the data, you’ll see there’s POPESTIMATE2018 as
the new data, and we’ll use POPESTIMATE2017 as the old data. So we’re looking at one year.
Then, to help us, we’ll use arrange again to sort it, so we get the fastest growing county over
one year.

population |> mutate(
change = (POPESTIMATE2018 - POPESTIMATE2017)/POPESTIMATE2017

)

# A tibble: 3,142 x 14
STNAME CTYNAME CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010
<chr> <chr> <dbl> <dbl> <dbl>

1 Alabama Autauga County 54571 54574 54754
2 Alabama Baldwin County 182265 182264 183111
3 Alabama Barbour County 27457 27457 27330
4 Alabama Bibb County 22915 22920 22872
5 Alabama Blount County 57322 57321 57373
6 Alabama Bullock County 10914 10911 10878
7 Alabama Butler County 20947 20943 20942
8 Alabama Calhoun County 118572 118594 118477
9 Alabama Chambers County 34215 34171 34122
10 Alabama Cherokee County 25989 25989 25974
# i 3,132 more rows
# i 9 more variables: POPESTIMATE2011 <dbl>, POPESTIMATE2012 <dbl>,
# POPESTIMATE2013 <dbl>, POPESTIMATE2014 <dbl>, POPESTIMATE2015 <dbl>,
# POPESTIMATE2016 <dbl>, POPESTIMATE2017 <dbl>, POPESTIMATE2018 <dbl>,
# change <dbl>

Click the black arrow pointing right and you’ll see, way out on the right, your change column.
But what do you see right away? Do those numbers look like we expect them to? No. They’re
a decimal expressed as a percentage. So let’s fix that by multiplying by 100.
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population |> mutate(
change = ((POPESTIMATE2018 - POPESTIMATE2017)/POPESTIMATE2017)*100

)

# A tibble: 3,142 x 14
STNAME CTYNAME CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010
<chr> <chr> <dbl> <dbl> <dbl>

1 Alabama Autauga County 54571 54574 54754
2 Alabama Baldwin County 182265 182264 183111
3 Alabama Barbour County 27457 27457 27330
4 Alabama Bibb County 22915 22920 22872
5 Alabama Blount County 57322 57321 57373
6 Alabama Bullock County 10914 10911 10878
7 Alabama Butler County 20947 20943 20942
8 Alabama Calhoun County 118572 118594 118477
9 Alabama Chambers County 34215 34171 34122
10 Alabama Cherokee County 25989 25989 25974
# i 3,132 more rows
# i 9 more variables: POPESTIMATE2011 <dbl>, POPESTIMATE2012 <dbl>,
# POPESTIMATE2013 <dbl>, POPESTIMATE2014 <dbl>, POPESTIMATE2015 <dbl>,
# POPESTIMATE2016 <dbl>, POPESTIMATE2017 <dbl>, POPESTIMATE2018 <dbl>,
# change <dbl>

Now, does this ordering do anything for us? No. Let’s fix that with arrange.

population |> mutate(
change = ((POPESTIMATE2018 - POPESTIMATE2017)/POPESTIMATE2017)*100

) |> arrange(desc(change))

# A tibble: 3,142 x 14
STNAME CTYNAME CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010
<chr> <chr> <dbl> <dbl> <dbl>

1 Texas Loving County 82 82 84
2 Colorado San Juan Coun~ 699 699 708
3 North Dakota McKenzie Coun~ 6360 6359 6411
4 Kentucky Lee County 7887 7887 7718
5 North Dakota Williams Coun~ 22398 22399 22588
6 Texas Comal County 108472 108485 109270
7 Texas Kenedy County 416 413 417
8 Texas Kaufman County 103350 103363 103890
9 North Carolina Brunswick Cou~ 107431 107429 108065
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10 Florida Walton County 55043 55043 55211
# i 3,132 more rows
# i 9 more variables: POPESTIMATE2011 <dbl>, POPESTIMATE2012 <dbl>,
# POPESTIMATE2013 <dbl>, POPESTIMATE2014 <dbl>, POPESTIMATE2015 <dbl>,
# POPESTIMATE2016 <dbl>, POPESTIMATE2017 <dbl>, POPESTIMATE2018 <dbl>,
# change <dbl>

So who had the most growth last year from the year before? Is everyone moving to Loving
County, Texas? Or is it small changes in a small county? Also, note North Dakota showing
up twice in the top 10.

7.1 Another use of mutate

Note in our data we have separate State and County name fields. If we were publishing this,
we wouldn’t want that.

So how can we fix that? Mutate! And a new function to combine text together called paste.
Paste allows us to merge fields together easily with a separator. In our case, we want to
combine the county name and the state name with a comma and a space between them.

population |>
mutate(

change = ((POPESTIMATE2018 - POPESTIMATE2017)/POPESTIMATE2017)*100,
location = paste(CTYNAME, STNAME, sep=", ")) |>

arrange(desc(change))

# A tibble: 3,142 x 15
STNAME CTYNAME CENSUS2010POP ESTIMATESBASE2010 POPESTIMATE2010
<chr> <chr> <dbl> <dbl> <dbl>

1 Texas Loving County 82 82 84
2 Colorado San Juan Coun~ 699 699 708
3 North Dakota McKenzie Coun~ 6360 6359 6411
4 Kentucky Lee County 7887 7887 7718
5 North Dakota Williams Coun~ 22398 22399 22588
6 Texas Comal County 108472 108485 109270
7 Texas Kenedy County 416 413 417
8 Texas Kaufman County 103350 103363 103890
9 North Carolina Brunswick Cou~ 107431 107429 108065
10 Florida Walton County 55043 55043 55211
# i 3,132 more rows
# i 10 more variables: POPESTIMATE2011 <dbl>, POPESTIMATE2012 <dbl>,
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# POPESTIMATE2013 <dbl>, POPESTIMATE2014 <dbl>, POPESTIMATE2015 <dbl>,
# POPESTIMATE2016 <dbl>, POPESTIMATE2017 <dbl>, POPESTIMATE2018 <dbl>,
# change <dbl>, location <chr>

EXERCISE: What happens when you sort it in ascending order? Delete the desc
part in arrange and see what happens. How would you describe this list?
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8 Working with dates

One of the most frustrating things in data is working with dates. Everyone has a different
opinion on how to record them, and every software package on the planet has to sort it out.
Dealing with it can be a little … confusing. And every dataset has something new to throw at
you. So consider this an introduction.

We’re going to do this two ways. First I’m going to show you how to use base R to solve a
tricky problem. And then we’ll use a library called lubridate to solve a more common and
less tricky problem. And then we’ll use a new library to solve most of the common problems
before they start.

8.1 The hard way

First, we’ll import tidyverse like we always do.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

We’re going to use a dataset of parking tickets at UNL. If we do this the old way – using
read.csv – this is what we get:

tickets <- read.csv("data/tickets.csv")
head(tickets)
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Citation Date Location Violation
1 15078429 2012-04-02 07:15:00 North Stadium Expired Meter
2 24048318 2012-04-02 07:22:00 Housing No Valid Permit Displayed
3 24048320 2012-04-02 07:26:00 14th & W Street No Valid Permit Displayed
4 15078430 2012-04-02 07:36:00 Champions Club Parking in Unauthorized Area
5 18074937 2012-04-02 07:39:00 Sandoz Expired Meter
6 18074938 2012-04-02 07:40:00 Sandoz Expired Meter

Note the date is a factor, not a date. We have to fix that. There’s a lot of ways to fix dates.
The base R way is to use formatting. The code is … a little odd … but it’s useful to know if
you get a really odd date format. What you are doing is essentially parsing the date into it’s
component parts then reassmbling it into a date using formatting.

newtickets <- tickets |> mutate(
CleanDate = as.POSIXct(Date, format="%Y-%m-%d %H:%M:%S")

)

head(newtickets)

Citation Date Location Violation
1 15078429 2012-04-02 07:15:00 North Stadium Expired Meter
2 24048318 2012-04-02 07:22:00 Housing No Valid Permit Displayed
3 24048320 2012-04-02 07:26:00 14th & W Street No Valid Permit Displayed
4 15078430 2012-04-02 07:36:00 Champions Club Parking in Unauthorized Area
5 18074937 2012-04-02 07:39:00 Sandoz Expired Meter
6 18074938 2012-04-02 07:40:00 Sandoz Expired Meter

CleanDate
1 2012-04-02 07:15:00
2 2012-04-02 07:22:00
3 2012-04-02 07:26:00
4 2012-04-02 07:36:00
5 2012-04-02 07:39:00
6 2012-04-02 07:40:00

CleanDate is now a special date format that includes times.

You can almost read the code that created it: The format of the date is %Y, which means a
four digit year DASH %m or two digit month DASH %d or two digit day SPACE %H or two
digit hour COLON %M or two digit minute COLON %S or two digit second. You can remix
that as you need. If you had a date that was 20021212 then you would do format="%Y%m%d"
and so on.
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There is a library called lubridate that can parse some common date problems. If it’s not
already installed, just run install.packages('lubridate')

library(lubridate)

Lubridate can handle this tickets data easier with one of it’s many functions. The functions
parse dates given a basic pattern. In this case, our data is in a very common pattern of year
month date hours minutes seconds. Lubridate has a function called ymd_hms.

lubridatetickets <- tickets |> mutate(
CleanDate = ymd_hms(Date)

)

head(lubridatetickets)

Citation Date Location Violation
1 15078429 2012-04-02 07:15:00 North Stadium Expired Meter
2 24048318 2012-04-02 07:22:00 Housing No Valid Permit Displayed
3 24048320 2012-04-02 07:26:00 14th & W Street No Valid Permit Displayed
4 15078430 2012-04-02 07:36:00 Champions Club Parking in Unauthorized Area
5 18074937 2012-04-02 07:39:00 Sandoz Expired Meter
6 18074938 2012-04-02 07:40:00 Sandoz Expired Meter

CleanDate
1 2012-04-02 07:15:00
2 2012-04-02 07:22:00
3 2012-04-02 07:26:00
4 2012-04-02 07:36:00
5 2012-04-02 07:39:00
6 2012-04-02 07:40:00

That’s less code and less weirdness, so that’s good.

But to get clean data, I’ve installed a library and created a new field so I can now start to
work with my dates. That seems like a lot, but don’t think your data will always be perfect
and you won’t have to do these things.

Still, there’s got to be a better way. And there is.

Fortunately, readr anticipates some date formattings and can automatically handle this (in-
deed it uses lubridate under the hood). The change in your code? You just use read_csv
instead of read.csv

tickets <- read_csv("data/tickets.csv")
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Rows: 161315 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Citation, Location, Violation
dttm (1): Date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

head(tickets)

# A tibble: 6 x 4
Citation Date Location Violation
<chr> <dttm> <chr> <chr>

1 15078429 2012-04-02 07:15:00 North Stadium Expired Meter
2 24048318 2012-04-02 07:22:00 Housing No Valid Permit Displayed
3 24048320 2012-04-02 07:26:00 14th & W Street No Valid Permit Displayed
4 15078430 2012-04-02 07:36:00 Champions Club Parking in Unauthorized Area
5 18074937 2012-04-02 07:39:00 Sandoz Expired Meter
6 18074938 2012-04-02 07:40:00 Sandoz Expired Meter

And just like that, the dates are formatted correctly.

But you’re not done with lubridate yet. It has some interesting pieces parts we’ll use else-
where.

What’s a question you might have about parking tickets on campus involving dates?

How about what month are the most tickets issued? We could use formatting to create a
Month field but that would group all the Aprils ever together. We could create a year and a
month together, but that would give us an invalid date object and that would create problems
later. Lubridate has something called a floor date that we can use.

So to follow along here, we’re going to use mutate to create a month field, group by to lump
them together, summarize to count them up and arrange to order them. We’re just chaining
things together.

tickets |>
mutate(Month = floor_date(Date, "month")) |>
group_by(Month) |>
summarise(total = n()) |>
arrange(desc(total))
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# A tibble: 56 x 2
Month total
<dttm> <int>

1 2014-10-01 00:00:00 5177
2 2015-04-01 00:00:00 4913
3 2014-09-01 00:00:00 4645
4 2015-09-01 00:00:00 4541
5 2015-10-01 00:00:00 4403
6 2015-03-01 00:00:00 4392
7 2016-02-01 00:00:00 4314
8 2016-09-01 00:00:00 4221
9 2016-03-01 00:00:00 4194
10 2012-10-01 00:00:00 4173
# i 46 more rows

So the most tickets in this dataset were issued in September of 2014. April of 2015 was second.
Then two Septembers and an October.

Any guesses why those months?

I’ll give you a hint. It involves 90,000 people gathering in a big building on campus in the fall
and one day in April or late March every spring.
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9 Filters and selections

More often than not, we have more data than we want. Sometimes we need to be rid of that
data. In dplyr, there’s two ways to go about this: filtering and selecting.

Filtering creates a subset of the data based on criteria. All records where the count is
greater than 10. All records that match “Nebraska”. Something like that. Filtering works
with rows – when we filter, we get fewer rows back than we start with.

Selecting simply returns only the fields named. So if you only want to see Year and
County, you select those fields. When you look at your data again, you’ll have two columns.
If you try to use one of your columns that you had before you used select, you’ll get an error.
Selecting works with columns. You will have the same number of records when
you are done, but fewer columns of data to work with.

Let’s work with the salaries data from the University of Nebraska. It has data from all NU
campuses, but only one of them is our campus, so let’s filter out everyone else.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

salaries <- read_csv("data/nusalaries1819.csv")

Rows: 13039 Columns: 7
-- Column specification --------------------------------------------------------
Delimiter: ","
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chr (4): Employee, Position, Campus, Department
num (3): Budgeted Annual Salary, Salary from State Aided Funds, Salary from ...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

The data we want to filter on is in Campus. So we’re going to use filter and something called
a comparison operator. We need to filter all records equal to UNL. The comparison operators
in R, like most programming languages, are == for equal to, != for not equal to, > for greater
than, >= for greater than or equal to and so on.

Be careful: = is not == and = is not “equal to”. = is an assignment operator in most
languages – how things get named.

unl <- salaries |> filter(Campus == "UNL")

head(unl)

# A tibble: 6 x 7
Employee Position Campus Department Budgeted Annual Sala~1
<chr> <chr> <chr> <chr> <dbl>

1 Abbott, Frances M Staff Secy III UNL FM&P Faci~ 37318
2 Abdel-Monem, Tarik L Research Specia~ UNL Public Po~ 58502
3 Abel, Marco Chairperson UNL English 64470
4 Abel, Marco Professor UNL English 39647
5 Abel, Rick A Control Systems~ UNL FM&P Buil~ 57178
6 Abendroth, Curtis L Asst Dir Facili~ UNL Housing F~ 79037
# i abbreviated name: 1: `Budgeted Annual Salary`
# i 2 more variables: `Salary from State Aided Funds` <dbl>,
# `Salary from Other Funds` <dbl>

And just like that, we have just UNL, which we can verify looking at the head, the first six
rows.

We also have more data than we might want. For example, the salary data is only in the
Budgeted Annual Salary column. The other two salary fields are useless detail.

To simplify our dataset, we can use select.

selected_unl <- unl |> select(Employee, Position, Campus, `Budgeted Annual Salary`)

head(selected_unl)
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# A tibble: 6 x 4
Employee Position Campus Budgeted Annual Sala~1
<chr> <chr> <chr> <dbl>

1 Abbott, Frances M Staff Secy III UNL 37318
2 Abdel-Monem, Tarik L Research Specialist UNL 58502
3 Abel, Marco Chairperson UNL 64470
4 Abel, Marco Professor UNL 39647
5 Abel, Rick A Control Systems Tech/Alarm~ UNL 57178
6 Abendroth, Curtis L Asst Dir Facilities Mgt/Ma~ UNL 79037
# i abbreviated name: 1: `Budgeted Annual Salary`

And now we only have four columns of data for whatever salary analysis we might want to
do.

9.1 Combining filters

So let’s say we wanted to know how many full professors make more than $100,000. We can
do this a number of ways. The first is we can chain together a whole lot of filters.

profs <- salaries |> filter(Campus == "UNL") |> filter(Position == "Professor") |> filter(`Budgeted Annual Salary` > 100000)

nrow(profs)

[1] 312

So that gives us 312 full professors – that’s the top rank of tenured professors – who make more
than $100,000. But that’s silly and repetitive, no? We can do better using boolean operators
– AND and OR. In this case, AND is & and OR is |.

The difference? With AND, all three things must be true to be included. With OR, any of
those three things can be true and it will be included. An assistant professor making $100k at
UNO will get included because they make $100k. One of the conditions is true.

Here’s the difference.

andprofs <- salaries |> filter(Campus == "UNL" & Position == "Professor" & `Budgeted Annual Salary` > 100000)

nrow(andprofs)

[1] 312
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So AND gives us the same answer we got before. What does OR give us?

orprofs <- salaries |> filter(Campus == "UNL" | Position == "Professor" | `Budgeted Annual Salary` > 100000)

nrow(orprofs)

[1] 7248

So there’s 7,248 unique people in the NU system who are at UNL (6,079 to be exact), are full
Professors (1,086 of them), or make more than $100,000 (1,604) of them. Included in that list?
Football coach Scott Frost, who makes … ahem … more than $100,000. A smidge more.
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10 Data Cleaning Part I: Data smells

Any time you are given a dataset from anyone, you should immediately be suspicious. Is this
data what I think it is? Does it include what I expect? Is there anything I need to know about
it? Will it produce the information I expect?

One of the first things you should do is give it the smell test.

Failure to give data the smell test can lead you to miss stories and get your butt kicked on a
competitive story.

Let’s look at some campus parking ticket data. You can get it here.

With data smells, we’re trying to find common mistakes in data. For more on data smells,
read the GitHub wiki post that started it all. The common mistakes we’re looking for are:,

• Missing data
• Gaps in data
• Wrong type of data
• Outliers
• Sharp curves
• Conflicting information within a dataset
• Conflicting information across datasets
• Wrongly derived data
• Internal inconsistency
• External inconsistency
• Wrong spatial data
• Unusable data, including non-standard abbreviations, ambiguous data, extraneous data,

inconsistent data

Not all of these data smells are detectable in code. You may have to ask people about the data.
You may have to compare it to another dataset yourself. Does the agency that uses the data
produce reports from the data? Does your analysis match those reports? That will expose
wrongly derived data, or wrong units, or mistakes you made with inclusion or exclusion.

But with several of these data smells, we can do them first, before we do anything else.
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10.1 Wrong Type

First, let’s look at Wrong Type Of Data. We can sniff that out by looking at the output of
readr

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

tickets <- read_csv("data/tickets.csv")

Rows: 161315 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Citation, Location, Violation
dttm (1): Date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Right away, we see there’s 104,265 parsing errors. Why? Look closely. The Citation number
that readr interprets from the first rows comes in at a number. But 56,000 rows in, those
citation numbers start having letters in them, and letters are not numbers.

The cheap way to fix this is to change the guess_max parameter of readr to just use more
than a few rows to guess the column types. It’ll go a little slower, but it’ll fix the problem.

tickets <- read_csv("data/tickets.csv", guess_max = 60000)
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Rows: 161315 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Citation, Location, Violation
dttm (1): Date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

For this, things seem to be good. Date appears to be in date format, things that aren’t
numbers appear to be text. That’s a good start.

10.2 Missing Data

The second smell we can find in code is missing data. We can do that through a series of
Group By and Count steps.

tickets |> group_by(Location) |> tally()

# A tibble: 247 x 2
Location n
<chr> <int>

1 1001 Y Street 508
2 10th & Q Street 303
3 10th & U Street 222
4 1101 Y Street 83
5 11th & Y Street 38
6 1235 Military Road 33
7 1320 Q 1
8 13th & R Lot 4918
9 14th & Avery Lot 1601
10 14th & Avery Parking Garage 2494
# i 237 more rows

What we’re looking for here are blanks: Tickets without a location. Typically, those will
appear first or last, depending on several things, so it’s worth checking the front and back of
our data.

What about ticket type?
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tickets |> group_by(Violation) |> tally()

# A tibble: 25 x 2
Violation n
<chr> <int>

1 Damage Property 25
2 Displaying Altered Permit 23280
3 Displaying Counterfeit Permit 18
4 Displaying Stolen Permit 4
5 Expired Meter 45072
6 Failure to Pay[on exit] 251
7 Failure to Reg. Veh to Permit 53
8 Failure to Register Veh w/ UNL 113
9 False Lost/Stolen Permit Rept 927
10 Falsify Permit Application 3
# i 15 more rows

None here either, so that’s good. It means our tickets will always have a location and a
violation type.

10.3 Gaps in data

Let’s now look at gaps in data. It’s been my experience that gaps in data often have to do
with time, so let’s first look at ticket dates, so we can see if there’s any big jumps in data.
You’d expect the numbers to change, but not by huge amounts. Huge change would indicate,
more often than not, that the data is missing. Let’s start with Date. If we’re going to work
with dates, we should have lubridate handy for floor_date.

library(lubridate)

tickets |> group_by(floor_date(Date, "month")) |> tally()

# A tibble: 56 x 2
`floor_date(Date, "month")` n
<dttm> <int>

1 2012-04-01 00:00:00 3473
2 2012-05-01 00:00:00 2572
3 2012-06-01 00:00:00 2478
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4 2012-07-01 00:00:00 2134
5 2012-08-01 00:00:00 3774
6 2012-09-01 00:00:00 4138
7 2012-10-01 00:00:00 4173
8 2012-11-01 00:00:00 3504
9 2012-12-01 00:00:00 1593
10 2013-01-01 00:00:00 3078
# i 46 more rows

First thing to notice: our data starts in April 2012. So 2012 isn’t a complete year. Then,
scroll through. Look at December 2013 - March 2014. The number of tickets drops to about
10 percent of normal. That’s … odd. And then let’s look at the end – November 2016. So not
a complete year in 2016 either.

10.4 Internal inconsistency

Any time you are going to focus on something, you should check it for consistency inside the
data set. So let’s pretend the large number of Displaying Altered Permit tickets caught your
attention and you want to do a story about tens of thousands of students being caught altering
their parking permits to reduce their costs parking on campus. Good story right? Before you
go calling the parking office for comment, I’d check that data first.

tickets |> filter(Violation == "Displaying Altered Permit") |> group_by(floor_date(Date, "month")) |> tally()

# A tibble: 29 x 2
`floor_date(Date, "month")` n
<dttm> <int>

1 2012-04-01 00:00:00 1072
2 2012-05-01 00:00:00 1283
3 2012-06-01 00:00:00 1324
4 2012-07-01 00:00:00 1357
5 2012-08-01 00:00:00 2249
6 2012-09-01 00:00:00 1797
7 2012-10-01 00:00:00 1588
8 2012-11-01 00:00:00 1183
9 2012-12-01 00:00:00 458
10 2013-01-01 00:00:00 1132
# i 19 more rows
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So this charge exists when our data starts, but scroll forward: In October 2013, there’s 1,081
tickets written. A month later, only 121. A month after that? 1. And then one sporadically
for three more years.

Something major changed. What is it? That’s why you are a reporter. Go ask. But we know
our data doesn’t support the story we started with.

And that’s what Data Smells are designed to do: stop you from going down a bad path.

10.5 A Shortcut: Summary

One quick way to get some data smells is to use R’s built in summary function. What summary
does is run summary statistics on each column of your dataset. Some of the output is …
underwhelming … but some is really useful. For example, looking at min and max for dates
can point to bad data there. Min and max will also show you out of range numbers – numbers
far too big or small to make sense.

The syntax is simple.

summary(tickets)

Citation Date Location
Length:161315 Min. :2012-04-02 07:15:00.00 Length:161315
Class :character 1st Qu.:2013-05-06 09:42:30.00 Class :character
Mode :character Median :2014-10-17 12:03:00.00 Mode :character

Mean :2014-08-13 19:36:52.66
3rd Qu.:2015-10-08 07:31:30.00
Max. :2016-11-03 13:59:19.00

Violation
Length:161315
Class :character
Mode :character

In this case, the output doesn’t do much for us except dates. Looking at the min and max
will tell us if we have any out of range dates. In this case, we do not.
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11 Data Cleaning Part II: Janitor

The bane of every data analyst’s existence is data cleaning.

Every developer, every data system, every agency, the all have opinions about how data gets
collected. Some decisions make sense from the outside. Some decisions are based entirely on
internal poltics: who is creating the data, how they are creating it, why they are creating it.
Is it automated? Is it manual? Are data normalized? Are there free form fields where users
can just type into or does the system restrict them to choices?

Your question – what you want to do with the data – is almost never part of that equation.

So cleaning data is the process of fixing issues in your data so you can answer the questions
you want to answer. Unfortunately, there’s no template here. There’s no checklist. It’s just a
big bag of tricks that eventually runs out and you’ll be left fixing individual issues by hand, if
it’s really bad.

But let’s start simple. There are certain things that need we can start with that will make our
lives easier. We’ll slowly make it harder as we dig deeper.

11.1 Cleaning headers

One of the first places we can start with cleaning data is cleaning the headers. Every system
has their own way of recording headers, and every developer has their own thoughts of what
a good idea is within it. R is most happy when headers are one word, lower case, without
special characters. If you’ve noticed readr output with backticks around headers like Incident
Date, it’s because of the space. Headers that start with numbers or are just a number – 2002
– also get backticks in readr.

There is an external library in R called janitor that makes fixing headers trivially simple.
You can install it by running install.packages("janitor") in your console.

Load libraries like we always do.

library(tidyverse)
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-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

Let’s load a new dataset – the list of active inmates in the Nebraska prison system.

inmates <- read_csv("data/activeinmates.csv")

New names:
* `FIRST NAME` -> `FIRST NAME...3`
* `MIDDLE NAME` -> `MIDDLE NAME...4`
* `NAME EXTENSION` -> `NAME EXTENSION...5`
* `FIRST NAME` -> `FIRST NAME...7`
* `MIDDLE NAME` -> `MIDDLE NAME...8`
* `NAME EXTENSION` -> `NAME EXTENSION...9`
* `` -> `...31`
* `` -> `...32`

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)
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Rows: 7674 Columns: 32
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (22): COMMITTED LAST NAME, FIRST NAME...3, MIDDLE NAME...4, NAME EXTENSI...
dbl (6): ID NUMBER, MIN MONTH, MIN DAY, MAX MONTH, MAX DAY, GOOD TIME LAW
lgl (4): NAME EXTENSION...9, GUN CLAUSE, ...31, ...32

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

From the output of readr, you can see all kinds of problems from the get go. Two columns are
missing names entirely. Three columns repeat – first name, middle name and name extension.
And many field names have spaces or other not-allowed characters. Not to mention: All of
them are in ALL CAPS.

Janitor makes this easy to fix. How easy? This easy.

inmates |> clean_names()

# A tibble: 7,674 x 32
id_number committed_last_name first_name_3 middle_name_4 name_extension_5

<dbl> <chr> <chr> <chr> <chr>
1 6145 KANE THOMAS <NA> <NA>
2 20841 ARNOLD WILLIAM L <NA>
3 25324 WALKER RICHARD T <NA>
4 25565 ALVAREZ THOMAS A <NA>
5 26103 ADAMS BRIAN J <NA>
6 26547 KIRBY RONALD EUGENE <NA>
7 27471 NIEMANN MAX A <NA>
8 27666 ORTIZ LAWRENCE <NA> <NA>
9 27767 POINDEXTER EDWARD <NA> <NA>
10 27778 DITTRICH LADDIE F <NA>
# i 7,664 more rows
# i 27 more variables: legal_last_name <chr>, first_name_7 <chr>,
# middle_name_8 <chr>, name_extension_9 <lgl>, date_of_birth <chr>,
# race_desc <chr>, gender <chr>, facility <chr>,
# current_sentence_pardoned_or_commuted_date <chr>, gun_clause <lgl>,
# sentence_begin_date <chr>, min_term_year <chr>, min_month <dbl>,
# min_day <dbl>, max_term_year <chr>, max_month <dbl>, max_day <dbl>, ...

Just like that, all lower case, all one word, no backticks necessary to confuse our code later
on.
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Another thing janitor does well is to make it easy to drop empty columns. Remember the
two unnamed columns in the data? Turns out they’re unnamamed because there’s nothing in
them. Nada. Blank. We could use select but janitor reduces the labor involved there.

First, let’s see how many columns we have.

inmates |> ncol()

[1] 32

And by using remove_empty("cols"), how many do we get rid of?

inmates |> clean_names() |> remove_empty("cols") |> ncol()

[1] 28

So this tells us there’s three completely empty columns in our data. So why keep them
around.

So we can run all of this together and get a dataset with useful columns and clean headers.

inmates |> clean_names() |> remove_empty("cols") -> clean_headers_inmates

11.2 Duplicates

One of the most difficult problems to fix in data is duplicates in the data. They can creep
in with bad joins, bad data entry practices, mistakes – all kinds of reasons. One trick is
determining if a duplicate is indeed a duplicate.

So the question is, do we have any inmates repeated? Anyone in prison twice?

Here we’ll use a function called get_dupes. And we’ll use the inmate’s last name, first name
and date of birth. The likelihood that someone has the same name and date of birth is very
small, so if there are no duplicates, we should get zero records returned.

clean_headers_inmates |> get_dupes(committed_last_name, first_name_3, date_of_birth)
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# A tibble: 2 x 29
committed_last_name first_name_3 date_of_birth dupe_count id_number
<chr> <chr> <chr> <int> <dbl>

1 WALLACE PAMELA 7/11/1966 2 99240
2 WALLACE PAMELA 7/11/1966 2 99955
# i 24 more variables: middle_name_4 <chr>, name_extension_5 <chr>,
# legal_last_name <chr>, first_name_7 <chr>, middle_name_8 <chr>,
# race_desc <chr>, gender <chr>, facility <chr>,
# current_sentence_pardoned_or_commuted_date <chr>,
# sentence_begin_date <chr>, min_term_year <chr>, min_month <dbl>,
# min_day <dbl>, max_term_year <chr>, max_month <dbl>, max_day <dbl>,
# parole_eligibility_date <chr>, earliest_possible_release_date <chr>, ...

Uh oh. We get two Pamela Wallaces born on the same day in 1966. But is it a duplicate
record? Look closely. Two different id_numbers. In two different facilities on two different
dates. Two different sentencing dates. Is it a duplicate record or the same person entering the
system two different times?

11.3 Inconsistency

Janitor also has some handy tools for our data smells. One is called tabyl, which creates a
table of unique records in a single field.

So does the Department of Corrections record gender consistently? tabyl will tell us and will
tell us a little bit about the data.

clean_headers_inmates |> tabyl(gender)

gender n percent
FEMALE 732 0.09538702
MALE 6942 0.90461298

So the Department of Corrections clearly doesn’t buy into more modern sentiments about
gender, but they are at least consistent. Every inmate has a gender – no NAs – and note that
90 percent of inmates are men.

How about race?

clean_headers_inmates |> tabyl(race_desc)
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race_desc n percent valid_percent
ASIAN 61 0.0079489184 0.0079520271
BLACK 2037 0.2654417514 0.2655455612

HISPANIC 1059 0.1379984363 0.1380524052
NATIVE AMERICAN 349 0.0454782382 0.0454960240

OTHER 56 0.0072973677 0.0073002216
PACIFIC ISLANDER 7 0.0009121710 0.0009125277

WHITE 4102 0.5345321866 0.5347412332
<NA> 3 0.0003909304 NA

Three people do not have a race – and according to the Census Bureau, Hispanic is not a race,
it’s an ethnicity – but otherwise, it looks solid. There’s very little in the way of inconsistency.

How about what facilities they are in?

clean_headers_inmates |> tabyl(facility)

facility n percent valid_percent
COMMUNITY CORRECTIONS-LINCOLN 1276 0.16627574 0.16887242

COMMUNITY CORRECTIONS-OMAHA 368 0.04795413 0.04870302
DIAGNOSTIC & EVALUATION CENTER 778 0.10138129 0.10296453

LINCOLN CORRECTIONAL CENTER 571 0.07440709 0.07556908
NEBRASKA CORR CENTER FOR WOMEN 480 0.06254887 0.06352567

NEBRASKA CORR YOUTH FACILTY 83 0.01081574 0.01098465
NEBRASKA STATE PENITENTIARY 1588 0.20693250 0.21016411
OMAHA CORRECTIONAL CENTER 1059 0.13799844 0.14015352

TECUMSEH STATE COR INSTITUTION 1104 0.14386239 0.14610905
WORK ETHIC CAMP 249 0.03244722 0.03295394

<NA> 118 0.01537660 NA

Not sure how I feel about 118 inmates not having a facility. That’s probably worth investigat-
ing. At least one, I know about – it lists the inmate as having escaped in the 1960s and never
found. Not sure about the others.

But sometimes, NAs are not bad data. Sometimes they’re just NA. Let’s look at
inst_release_type or how inmates were released.

clean_headers_inmates |> tabyl(inst_release_type)

inst_release_type n percent valid_percent
DISCRETIONARY PAROLE 1391 0.1812614021 0.5506730008
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ESCAPE 51 0.0066458170 0.0201900238
MANDATORY PAROLE 2 0.0002606203 0.0007917656

RE-PAROLE 3 0.0003909304 0.0011876485
RELEASED TO PRS 1079 0.1406046390 0.4271575614

<NA> 5148 0.6708365911 NA

By far the largest group here is NA. Why is that? They haven’t been released yet. They’re
still in prison.
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12 Data Cleaning Part III: Open Refine

Gather ’round kids and let me tell you a tale about your author. In college, your author got
involved in a project where he mapped crime in the city, looking specifically in the neigh-
borhoods surrounding campus. This was in the mid 1990s. Computers were under powered.
Tools were pretty primitive. I was given a database of nearly 50,000 calls for service.

And then I learned that addresses were not stored in a standard way. However the officer
wrote it down, that’s how it was recorded.

What did that mean?

It meant the Lincoln Police Department came up with dozens of ways to say a single place.
And since the mapping software needed the addressed to be in a specific form, I had to fix
them. For example, I will go to my grave knowing that Lincoln High School’s street address
is 2229 J Street. Police officers wrote down LHS, L.H.S., Lincoln HS, Lincoln H.S., LHS (J
Street), 2229 J, 2229 J ST, St., Street and on and on and on. That one was relatively easy.
The local convenience store chain, with 8 locations around the city, was harder. I had to use
the patrol district to locate them.

It took me four months to clean up more than 30,000 unique addresses and map them.

I tell you this because if I had Open Refine, it would have taken me a week, not four months.
Every time I talk about Open Refine, I remember this, and I get mad.

We’re going to explore two ways into Open Refine: Through R, and through Open Refine
itself.

12.1 Refinr, Open Refine in R

What is Open Refine?

Open Refine is a series of tools – algorithms – that find small differences in text and helps you
fix them quickly. How Open Refine finds those small differences is through something called
clustering. The algorithms behind clustering are not exclusive to Open Refine, so they can be
used elsewhere.
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Enter refinr, a package that contains the same clustering algorithms as Open Refine but all
within R. Go ahead and install it if you haven’t already by opening the console and running
install.packages("refinr"). Then we can load libraries as we do.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(refinr)
library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

Let’s load a simple dataset where we know there’s a simple problem. Let’s load the dataset of
mountainlion sightings.

mountainlions <- read_csv("https://mattwaite.github.io/datajournalismfiles/mountainlions.csv")

Rows: 393 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Cofirm Type, COUNTY, Date
dbl (1): ID

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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The issue in this dataset, if you look carefully, is that there’s two Sheridan counties – a Sheridan
and a sheridan.

mountainlions |> group_by(COUNTY) |> tally()

# A tibble: 42 x 2
COUNTY n
<chr> <int>

1 Banner 6
2 Blaine 3
3 Box Butte 4
4 Brown 15
5 Buffalo 3
6 Cedar 1
7 Cherry 30
8 Custer 8
9 Dakota 3
10 Dawes 111
# i 32 more rows

The first merging technique we’ll try is the key_collision_merge. The key collision merge
function takes each string and extracts the key parts of it. It then puts every key in a bin
based on the keys matching. So in this case, it finds sheridan and Sheridan and recognizes
that the keys match, and since Sheridan is more common, it uses that one.

One rule you should follow: do not overwrite your original fields. Always work on a
copy. If you overwrite your original field, how will you know if it did the right thing? How can
you compare it to your original data? To follow this, I’m going to mutate a new field called
CleanCounty and put the results of key collision merge there.

Then, to show it worked, I’ll do the same group and count.

mountainlions |>
mutate(CleanCounty = key_collision_merge(COUNTY)) |>
group_by(CleanCounty) |> tally()

# A tibble: 41 x 2
CleanCounty n
<chr> <int>

1 Banner 6
2 Blaine 3
3 Box Butte 4
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4 Brown 15
5 Buffalo 3
6 Cedar 1
7 Cherry 30
8 Custer 8
9 Dakota 3
10 Dawes 111
# i 31 more rows

And just like that, instead of 35 and 2 in two different Sheridan counties, we have 37 in one
Sheridan County.

12.2 More complex issues

Let’s load a dataset of the charges Nebraska prison inmates were convicted of, which is why
they’re in prison. We’ll also use janitor’s clean_names function to give us usable headers.

charges <- read_csv("data/charges.csv") |> clean_names()

Rows: 19226 Columns: 14
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (9): OFFENSE MINIMUM YEAR OR TERM, OFFENSE MAXIMUM YEAR OR TERM, OFFENSE...
dbl (5): ID NUMBER, MINIMUM MONTH, MINIMUM DAY, MAXIMUM MONTH, MAXIMUM DAY

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

The problematic – and among the most interesting – fields in this dataset is the name of the
charges. What is the most common charge keeping someone in prison?

I’m not going to run the list here because it’s long – thousands of lines long. You should run
it yourself:

charges |> tabyl(offense_arrest_desc)

You’ll see right away that there’s problems. There’s dozens upon dozens of charges that are
the same thing, just slightly different. There’s 4003 unique charges, and many of them are
duplicates.
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charges |> group_by(offense_arrest_desc) |> tally(sort=TRUE) |> nrow()

[1] 4003

So how does key_collision_merge do with this?

charges |>
mutate(

clean_charges = key_collision_merge(offense_arrest_desc)
) |>

group_by(clean_charges) |>
tally() |>
nrow()

[1] 3420

Cuts down the duplicates by 583. But since the charges are often multiple words, we should
try using n_gram_merge, which looks a multiple words.

Here’s an example using sensible defaults for weighting – unfortunately the documentation
doesn’t do much to explain what they are.

charges |>
mutate(

clean_charges = n_gram_merge(
offense_arrest_desc, weight = c(d = 0.2, i = 0.2, s = 1, t = 1))) |>

group_by(clean_charges) |>
tally() |>
nrow()

[1] 3036

Cuts it down by almost 1000. That seems pretty good. Here’s a different method, using a
method that turns words into phonetic spellings called soundex.

charges |>
mutate(

clean_charges = n_gram_merge(
offense_arrest_desc, method = "soundex", useBytes = TRUE
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)) |>
group_by(clean_charges) |>
tally() |>
nrow()

[1] 2688

Cut it down by almost 1400!

BUT.

Are they right?

We have no idea. Let’s look at the first 30 rows.

charges |>
mutate(

clean_charges = n_gram_merge(
offense_arrest_desc, method = "soundex", useBytes = TRUE
)) |>

filter(clean_charges != offense_arrest_desc) |> select(offense_arrest_desc, clean_charges) |> head(30)

# A tibble: 30 x 2
offense_arrest_desc clean_charges
<chr> <chr>

1 ASSLT WI INFLICT BODILY INJURY ASSLT W/I INFLCT BODILY INJURY
2 STAB W/I TO KILL WOUND OR MAIM STAB W/I KILL, WOUND, OR MAIM
3 USE OF WEAPON TO COMMIT FELONY USE WEAPON TO COMMIT FELONY
4 3RD DEGREE ASSAULT ON OFFICER ASSAULT ON OFFICER 3RD DEGREE
5 3RD DEGREE ASSAULT ON OFFICER ASSAULT ON OFFICER 3RD DEGREE
6 POSS CONTROLLED SUBSTANCE POSSESS CONTROLLED SUBSTANCE
7 MANUF/DIST CONT SUBST - MARIJ. DISTRIBUTION OF C/S-MARIJUANA
8 POSS DEADLY WEAP BY FELON POSSESS DEADLY WEAPON BY FELON
9 POSS FIREARM BY FELON POS FIREARM BY FELON
10 3RD DGR ASSAULT ON AN OFFICER ASSAULT ON AN OFFICER 3RD DEGR
# i 20 more rows

If you look carefully, you’ll see a lot of success here. But look at line 23. The charge is theft
by taking $0-500. The clean version? Theft by taking $5000. That’s a big difference, and a
bad miss.

So can we trust automated data cleaning?

This note from the documentation is exceedingly important:
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This package is NOT meant to replace OpenRefine for every use case. For situa-
tions in which merging accuracy is the most important consideration, OpenRefine
is preferable. Since the merging steps in refinr are automated, there will usually
be more false positive merges, versus manually selecting clusters to merge in Open-
Refine.

12.3 Manually cleaning data with Open Refine

Open Refine is free software. You should download and install it. Refinr is great for quick
things on smaller datasets that you can check to make sure it’s not up to any mischief. For
bigger datasets, Open Refine is the way to go. And it has a lot more tools than refinr does
(by design, but still).

After you install it, run it. Open Refine works in the browser, and the app spins up a small web
server visible only on your computer to interact with it. A browser will pop up automatically.

You first have to import your data into a project.

After your data is loaded into the app, you’ll get a screen to look over what the data looks
like. On the top right corner, you’ll see a button to create the project.
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The real power in Open Refine is in faceting. In our case, we’re specifically going to use text
faceting. Next to the OFFENSE ARREST DESC header, click the down arrow, then facet,
then text facet.
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After that, a new box will appear on the left. It tells us how many unique offenses are there:
4,082. And, there’s a button on the right of the box that says Cluster. Click that.

The default clustering algorithm used is key collision, using the fingerprint function. This is
the same method we used with Sheridan County above.

At the top, you’ll see which method was used, and how many clusters that algorithm identified.
Then, below that, you can see what those clusters are. Then, using human judgement, you
can say if you agree with the cluster. If you do, click the merge checkbox. When it merges,
the new result will be what it says in New Cell Value. Most often, that’s the row with the
most common result.
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Now begins the fun part: You have to look at all 303 clusters found and decide if they are
indeed valid. The key collision method is very good, and very conservative. You’ll find that
most of them are usually valid.

When you’re done, click Merge Selected and Re-Cluster.

If any new clusters come up, evaluate them. Repeat until either no clusters come up or the
clusters that do come up are ones you reject.

Now. Try a new method. Rinse and repeat. You’ll keep doing this, and if the dataset is
reasonably clean, you’ll find the end.

If it’s not, it’ll go on forever.
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A question for all data analysts – if the dataset is bad enough, can it ever be cleaned?

There’s no good answer. You have to find it yourself.
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13 Cleaning Data Part IV: PDFs

The next circle of Hell on the Dante’s Inferno of Data Journalism is the PDF. Governments
everywhere love the PDF and publish all kinds of records in a PDF. The problem is a PDF
isn’t a data format – it’s a middle finger, saying I’ve Got Your Accountability Right Here,
Pal.

It’s so ridiculous that there’s a constellation of tools that do nothing more than try to harvest
tables out of PDFs. There are online services like CometDocs where you can upload your PDF
and point and click your way into an Excel file. There are mobile device apps that take a
picture of a table and convert it into a spreadsheet. But one of the best is a tool called Tabula.
It was build by journalists for journalists.

There is a version of Tabula that will run inside of R – a library called Tabulizer – but the
truth is I’m having the hardest time installing it on my machine, which leads me to believe
that trying to install it across a classroom of various machines would be disasterous. The
standalone version works just fine.

Unfortunately, harvesting tables from PDFs with Tabula is an exercise in getting your hopes
up, only to have them dashed. We’ll start with an example.

13.1 When it looks good, but goes wrong

Every year, the University of Nebraska-Lincoln publishes dozens of PDFs that give you inter-
esting demographic information about students, the faculty and a variety of other things. But
all of it – every little bit of it – is in a PDF. And most of them are designed to look “nice”
not convey data. Even when they do very obviously look like they came from a spreadsheet
– like someone printed the spreadsheet to a PDF so they could put it on the web – it doesn’t
work.

A perfect example of this is the data showing the breakdown of students by degree, major,
race and sex. Open it up, it looks like a spreadsheet but in a PDF.
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Download and install Tabula. Tabula works much the same way as Open Refine does – it
works in the browser by spinning up a small webserver in your computer.

When Tabula opens, you click browse to find the PDF on your computer somewhere, and then
click import.

After it imports, click autodetect tables. You’ll see red boxes appear around what Tabula
believes are the tables. You’ll see it does a pretty good job at this.
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If you like what you see, click Preview and Export Extracted Data.

And here’s where it all starts to go wrong.

You’ll see at first it looks good – you get a reasonable representation of the table. But look at
the first line.
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First, the misspelling of college is disturbing. Did a university document misspell it?
No. Which means Tabula is reading two ls as one. That’s … not good.

Second, notice how the College of Agri Sci and Natl Resources, which was in it’s own column
before have been merged, somewhat inartfully, into the first column of major names. There is
no major Colege of Agri Sci and Agribusiness. Same with Natl Resources Agricultural & Env
Sci Comm. Those aren’t things.

Note the empty column between Major1 and DegreeId.

Now scroll down some more.
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Notice Architecture has the same merging of college name and first major problems as the first
one does, but note the blank column is missing.

Look at Arts and Sciences. Arts and Sciences are now in their own column, as the data shows,
but there’s now empty names that shouldn’t be. What are those?

In short, it’s a mess.

Here’s the sad truth: THIS IS PRETTY GOOD. Open it in a spreadsheet and a little copying
and pasting work while double checking the right names line up with the right rows and you’re
in business. As converted PDFs, this isn’t bad.

It beats typing it out.

13.2 When it works well.

Each month, the Nebraska Department of Revenue releases the monthly tax receipts of the
state, and forecasts into the future what tax receipts might be in the near future. They do this
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for planning purposes – the Legislature needs to know how much money the state may have
when the new budget is put into place so they know how much money they have to spend.

The announcement comes in a press release. Each press release includes a table showing the
current number, the predicted number, and difference. Of course it’s a PDF.

Let’s look at the most recent month as of this writing: January 2020. Download it, open it in
Tabula and hit Autodetect tables.

You’ll note it finds no tables on the first page. Which is good, because there aren’t any. Let’s
look at the third page. It finds a table, but is it one?

Let’s hit the X in the top right on that one.

That leaves page 2. It finds two tables there. Let’s just grab the first. Hit X on the second
and click to preview the extracted data.

This looks good. So let’s export it to a csv.

13.3 Cleaning up the data in R

The good news is that we have data we don’t have to retype. The bad news is, it’s hardly in
importable shape.

Let’s load libraries.

library(tidyverse)
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-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

To import this, we need one row of headers. We have three. And we need headers that make
sense.

We can spell these out in the import step. First, we’ll use skip to skip the first three lines.
Then we’ll spell out the column names by hand in a col_names bit. Here’s how it looks.

receipts <- read_csv("data/tabula-General_Fund_Receipts_January_2020.csv", skip = 3, col_names = c("Month", "TotalActualNetReceipts", "TotalProjectedNetReceipts", "Difference", "PercentDifference", "CumulativeActualNetReceipts", "CumulativeProjectedNetReceipts", "CumulativeDifference","CumulativePercentDifference"), skip_empty_rows = TRUE)

Rows: 7 Columns: 9
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (9): Month, TotalActualNetReceipts, TotalProjectedNetReceipts, Differenc...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Now we have a harder part.

The columns come in as character columns. Why? Because the state puts commas and $ and
% in them, which R does not interpret as anything except text. So we need to get rid of them.
We can mutate columns and use a function called gsub that finds a string and replaces it with
something. So in our case, we’re going to gsub(",","", fieldname). The unfortunate part
is we have a lot of colunns and a lot of fixes. So this is going to require a lot of code. It is
repetitive, though, so we can copy and paste and adjust with most of it.

At the end, we need to use a function called mutate_at and convert the columns that aren’t
text into numbers.

And one last thing: If we do many months of this, we should note which report this comes
from. We can do this with mutate as well.

Here’s what that looks like:
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receipts |> mutate(
TotalActualNetReceipts = gsub(",","",TotalActualNetReceipts),
TotalActualNetReceipts = gsub("\\$","",TotalActualNetReceipts),
TotalProjectedNetReceipts = gsub(",","",TotalProjectedNetReceipts),
TotalProjectedNetReceipts = gsub("\\$","",TotalProjectedNetReceipts),
Difference = gsub(",","",Difference),
Difference = gsub("\\$","",Difference),
PercentDifference = gsub("\\%","",PercentDifference),
CumulativeActualNetReceipts = gsub(",","",CumulativeActualNetReceipts),
CumulativeActualNetReceipts = gsub("\\$","",CumulativeActualNetReceipts),
CumulativeProjectedNetReceipts = gsub(",","",CumulativeProjectedNetReceipts),
CumulativeProjectedNetReceipts = gsub("\\$","",CumulativeProjectedNetReceipts),
CumulativeDifference = gsub(",","",CumulativeDifference),
CumulativeDifference = gsub("\\$","",CumulativeDifference),
CumulativePercentDifference = gsub("\\%","",CumulativePercentDifference)
) |> mutate_at(vars(-Month), as.numeric) |> mutate(ReportMonth = "January 2020")

# A tibble: 7 x 10
Month TotalActualNetReceipts TotalProjectedNetReceipts Difference
<chr> <dbl> <dbl> <dbl>

1 July 284883132 271473079 13410054
2 August 462019974 440504016 21515958
3 September 551908013 510286143 41621870
4 October 289723434 266204529 23518905
5 November 431787603 404934524 26853079
6 December 472926836 421455999 51470837
7 January 467698460 412661036 55037424
# i 6 more variables: PercentDifference <dbl>,
# CumulativeActualNetReceipts <dbl>, CumulativeProjectedNetReceipts <dbl>,
# CumulativeDifference <dbl>, CumulativePercentDifference <dbl>,
# ReportMonth <chr>

We can now reuse this with other months after we harvest the data out of it.
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14 Combining and joining

Often, as data journalists, we’re looking at data across time or at data stored in multiple
tables. And to do that, we need to often need to merge that data together.

Depending on what we have, we may just need to stack data on top of each other to make new
data. If we have 2019 data and 2018 data and we want that to be one file, we stack them. If
we have a dataset of cows in counties and a dataset of populations in county, we’re going to
join those two together on the county – the common element.

Let’s explore.

14.1 Combining data

In the last assignment, we harvested data out of PDFs. Let’s reuse what we did there and
merge three months of reports from the Department of Revenue together. For mine, I have
January 2020, December 2019, and November 2019.

Let’s do what we need to import them properly. Unlike the last example, I’ve merged it all
into one step for each of the three datasets.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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receiptsJan20 <- read_csv("data/tabula-General_Fund_Receipts_January_2020.csv", skip = 3, col_names = c("Month", "TotalActualNetReceipts", "TotalProjectedNetReceipts", "Difference", "PercentDifference", "CumulativeActualNetReceipts", "CumulativeProjectedNetReceipts", "CumulativeDifference","CumulativePercentDifference"), skip_empty_rows = TRUE) |> mutate(
TotalActualNetReceipts = gsub(",","",TotalActualNetReceipts),
TotalActualNetReceipts = gsub("\\$","",TotalActualNetReceipts),
TotalProjectedNetReceipts = gsub(",","",TotalProjectedNetReceipts),
TotalProjectedNetReceipts = gsub("\\$","",TotalProjectedNetReceipts),
Difference = gsub(",","",Difference),
Difference = gsub("\\$","",Difference),
PercentDifference = gsub("\\%","",PercentDifference),
CumulativeActualNetReceipts = gsub(",","",CumulativeActualNetReceipts),
CumulativeActualNetReceipts = gsub("\\$","",CumulativeActualNetReceipts),
CumulativeProjectedNetReceipts = gsub(",","",CumulativeProjectedNetReceipts),
CumulativeProjectedNetReceipts = gsub("\\$","",CumulativeProjectedNetReceipts),
CumulativeDifference = gsub(",","",CumulativeDifference),
CumulativeDifference = gsub("\\$","",CumulativeDifference),
CumulativePercentDifference = gsub("\\%","",CumulativePercentDifference)
) |> mutate_at(vars(-Month), as.numeric) |> mutate(ReportMonth = "January 2020")

Rows: 7 Columns: 9
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (9): Month, TotalActualNetReceipts, TotalProjectedNetReceipts, Differenc...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

receiptsDec19 <- read_csv("data/tabula-General_Fund_Receipts_December_2019.csv", skip = 3, col_names = c("Month", "TotalActualNetReceipts", "TotalProjectedNetReceipts", "Difference", "PercentDifference", "CumulativeActualNetReceipts", "CumulativeProjectedNetReceipts", "CumulativeDifference","CumulativePercentDifference"), skip_empty_rows = TRUE) |> mutate(
TotalActualNetReceipts = gsub(",","",TotalActualNetReceipts),
TotalActualNetReceipts = gsub("\\$","",TotalActualNetReceipts),
TotalProjectedNetReceipts = gsub(",","",TotalProjectedNetReceipts),
TotalProjectedNetReceipts = gsub("\\$","",TotalProjectedNetReceipts),
Difference = gsub(",","",Difference),
Difference = gsub("\\$","",Difference),
PercentDifference = gsub("\\%","",PercentDifference),
CumulativeActualNetReceipts = gsub(",","",CumulativeActualNetReceipts),
CumulativeActualNetReceipts = gsub("\\$","",CumulativeActualNetReceipts),
CumulativeProjectedNetReceipts = gsub(",","",CumulativeProjectedNetReceipts),
CumulativeProjectedNetReceipts = gsub("\\$","",CumulativeProjectedNetReceipts),
CumulativeDifference = gsub(",","",CumulativeDifference),
CumulativeDifference = gsub("\\$","",CumulativeDifference),
CumulativePercentDifference = gsub("\\%","",CumulativePercentDifference)
) |> mutate_at(vars(-Month), as.numeric) |> mutate(ReportMonth = "December 2019")

86



Rows: 6 Columns: 9
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (9): Month, TotalActualNetReceipts, TotalProjectedNetReceipts, Differenc...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

receiptsNov19 <- read_csv("data/tabula-General_Fund_Receipts_November_12-13-2019.csv", skip = 3, col_names = c("Month", "TotalActualNetReceipts", "TotalProjectedNetReceipts", "Difference", "PercentDifference", "CumulativeActualNetReceipts", "CumulativeProjectedNetReceipts", "CumulativeDifference","CumulativePercentDifference"), skip_empty_rows = TRUE) |> mutate(
TotalActualNetReceipts = gsub(",","",TotalActualNetReceipts),
TotalActualNetReceipts = gsub("\\$","",TotalActualNetReceipts),
TotalProjectedNetReceipts = gsub(",","",TotalProjectedNetReceipts),
TotalProjectedNetReceipts = gsub("\\$","",TotalProjectedNetReceipts),
Difference = gsub(",","",Difference),
Difference = gsub("\\$","",Difference),
PercentDifference = gsub("\\%","",PercentDifference),
CumulativeActualNetReceipts = gsub(",","",CumulativeActualNetReceipts),
CumulativeActualNetReceipts = gsub("\\$","",CumulativeActualNetReceipts),
CumulativeProjectedNetReceipts = gsub(",","",CumulativeProjectedNetReceipts),
CumulativeProjectedNetReceipts = gsub("\\$","",CumulativeProjectedNetReceipts),
CumulativeDifference = gsub(",","",CumulativeDifference),
CumulativeDifference = gsub("\\$","",CumulativeDifference),
CumulativePercentDifference = gsub("\\%","",CumulativePercentDifference)
) |> mutate_at(vars(-Month), as.numeric) |> mutate(ReportMonth = "November 2019")

Rows: 5 Columns: 9
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (9): Month, TotalActualNetReceipts, TotalProjectedNetReceipts, Differenc...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

All three of these datasets have the same number of columns, all with the same names, so if
we want to merge them together to compare them over time, we need to stack them together.
The verb here, in R, is rbind. The good news about rbind is that it is very simple. The bad
news – you can only merge two things at a time.

Since we have three things, we’re going to do this in steps. First, we’ll create a dataframe
that will hold it all and we’ll populate it with two of our revenue dataframes rbinded together.
Then, we’ll overwrite our new dataframe with the results of that dataframe with the third
revenue dataframe.
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predictions1 <- rbind(receiptsJan20, receiptsDec19)

predictions2 <- rbind(predictions1, receiptsNov19)

predictions2

# A tibble: 18 x 10
Month TotalActualNetReceipts TotalProjectedNetReceipts Difference
<chr> <dbl> <dbl> <dbl>

1 July 284883132 271473079 13410054
2 August 462019974 440504016 21515958
3 September 551908013 510286143 41621870
4 October 289723434 266204529 23518905
5 November 431787603 404934524 26853079
6 December 472926836 421455999 51470837
7 January 467698460 412661036 55037424
8 July 284883132 271473079 13410054
9 August 462019974 440504016 21515958
10 September 551908013 510286143 41621870
11 October 289723434 266204529 23518905
12 November 431787603 404934524 26853079
13 December 472926836 421455999 51470837
14 July 284883132 271473079 13410054
15 August 462019974 440504016 21515958
16 September 551908013 510286143 41621870
17 October 289723434 266204529 23518905
18 November 431787603 404934524 26853079
# i 6 more variables: PercentDifference <dbl>,
# CumulativeActualNetReceipts <dbl>, CumulativeProjectedNetReceipts <dbl>,
# CumulativeDifference <dbl>, CumulativePercentDifference <dbl>,
# ReportMonth <chr>

And boom, like that, we have 18 rows of data instead of three dataframes of 5, 6, and 7
respectively.

14.2 Joining data

More difficult is when you have two separate tables that are connected by a common element
or elements.
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Let’s return to our fatal accident data. In reality, the Fatality Analysis Reporting System data
has 27 tables in it – everything from details about the damage to the paperwork done.

Let’s just merge two of them and just for the state of Nebraska – download the accidents and
the people.

Often, when talking about relational data files like this, there’s substantial amounts of docu-
mentation that go with it to tell you how these things are related and what codes mean. The
FARS data is no different. You should open it and click on the PERSON Data File.

ST_CASE should be used to merge the Person data file with the Accident data
file for a set of all motorists and non-motorists.

So that’s what we’re going to do.

accidents <- read_csv("data/neaccidents.csv")

Rows: 201 Columns: 52
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): TWAY_ID, TWAY_ID2, RAIL
dbl (49): STATE, ST_CASE, VE_TOTAL, VE_FORMS, PVH_INVL, PEDS, PERNOTMVIT, PE...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

persons <- read_csv("data/nepersons.csv")

Rows: 553 Columns: 62
-- Column specification --------------------------------------------------------
Delimiter: ","
dbl (62): STATE, ST_CASE, VE_FORMS, VEH_NO, PER_NO, STR_VEH, COUNTY, DAY, MO...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

First, notice something in the environment about your dataset: there are 201 accidents but
553 persons. That means there’s not quite 3 people involved in every accident on average
between drivers and passengers. Some are single car, single person crashes. Some involve a lot
of people.
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To put these two tables together, we need to use something called a join. There are different
kinds of join. It’s better if you think of two tables sitting next to each other. A left_join
takes all the records from the left table and only the records that match in the right one. A
right_join does the same thing. An inner_join takes only the records where they are equal.
There’s one other join – a full_join which returns all rows of both, regardless of if there’s a
match – but I’ve never once had a use for a full join.

In the PERSON Data File documentation, we see that column that connects these two tables
together is the ST_CASE column.

So we can do this join multiple ways and get a similar result. We can put the person file on the
left and the accident on the right and use a left join to get them all together. And we use by=
to join by the right column. And to avoid rendering hundreds of rows of data, I’m going to
count the rows at the end. The reason I’m going this is important: Rule 1 in joining data
is having an idea of what you are expecting to get. So with a left join with people on
the left, I have 553 people, so I expect to get 553 rows when I’m done.

persons |> left_join(accidents, by="ST_CASE") |> nrow()

[1] 553

Remove the nrow and run it again for yourself. See how there are several columns that end
with .X? That means they’re duplicates. There’s a solid chance they are the same in both
tables. By default, dplyr will do a “natural” join, where it’ll match all the matching columns
in both tables. So if we take out the by, it’ll use all the common columns between the tables.
That may not be right – our documentation says ST_CASE is how they are related – but let’s
try it. If it works, we should get 553 rows.

persons |> left_join(accidents)

Joining with `by = join_by(STATE, ST_CASE, VE_FORMS, COUNTY, DAY, MONTH, HOUR,
MINUTE, RUR_URB, FUNC_SYS, HARM_EV, MAN_COLL, SCH_BUS)`

# A tibble: 553 x 101
STATE ST_CASE VE_FORMS VEH_NO PER_NO STR_VEH COUNTY DAY MONTH HOUR MINUTE
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 31 310001 2 1 1 0 55 1 1 0 20
2 31 310001 2 2 1 0 55 1 1 0 20
3 31 310002 1 1 1 0 157 7 1 22 0
4 31 310003 1 0 1 1 55 10 1 6 57
5 31 310003 1 1 1 0 55 10 1 6 57
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6 31 310004 2 1 1 0 79 10 1 16 55
7 31 310004 2 2 1 0 79 10 1 16 55
8 31 310005 2 1 1 0 119 10 1 4 30
9 31 310005 2 2 1 0 119 10 1 4 30

10 31 310006 1 0 1 1 109 11 1 6 25
# i 543 more rows
# i 90 more variables: RUR_URB <dbl>, FUNC_SYS <dbl>, HARM_EV <dbl>,
# MAN_COLL <dbl>, SCH_BUS <dbl>, MAKE <dbl>, MAK_MOD <dbl>, BODY_TYP <dbl>,
# MOD_YEAR <dbl>, TOW_VEH <dbl>, SPEC_USE <dbl>, EMER_USE <dbl>,
# ROLLOVER <dbl>, IMPACT1 <dbl>, FIRE_EXP <dbl>, AGE <dbl>, SEX <dbl>,
# PER_TYP <dbl>, INJ_SEV <dbl>, SEAT_POS <dbl>, REST_USE <dbl>,
# REST_MIS <dbl>, AIR_BAG <dbl>, EJECTION <dbl>, EJ_PATH <dbl>, ...

So instead of just one column, it used 13. And we got the same answer. And we don’t have
any columns with .X after it anymore. So we’re good to move forward.

Let’s save our joined data to a new dataframe.

personaccidents <- persons |> left_join(accidents)

Joining with `by = join_by(STATE, ST_CASE, VE_FORMS, COUNTY, DAY, MONTH, HOUR,
MINUTE, RUR_URB, FUNC_SYS, HARM_EV, MAN_COLL, SCH_BUS)`

Now, with our joined data, we can answer questions that come from both datasets. So what if
we looked at median age of drivers who died broken down by what kind of roadway the accident
happened on? We can do this now because the accident data has the roadway information
information and the age and who was driving and what type of injury they sustained comes
from the person table.

We get this by using filters followed by a group by and summarize. In the data documentation
linked above, look in the PERSON Data File to get the appropriate filters. In this case,
we want PER_TYPE of 1 (the driver) and an INJ_SEV of 4, which means death. In the
ACCCIDENT Data File section, we learn it’s the ROUTE we want to group by.

personaccidents |>
filter(PER_TYP == 1) |>
filter(INJ_SEV == 4) |>
group_by(ROUTE) |>
summarize(

count = n(),
avgage = mean(AGE),
medage = median(AGE))
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# A tibble: 5 x 4
ROUTE count avgage medage
<dbl> <int> <dbl> <dbl>

1 1 15 40.5 33
2 2 51 53.1 51
3 3 31 42.3 42
4 4 37 37.3 36
5 6 18 40.4 35

According to our query, 15 accidents happened on interstates, and the median age of those
was the lowest of all at 33. The most accidents were on US Highways, which makes sense
because there’s a lot more lane miles of US Highways than Interstates in Nebraska and pretty
much every other state. But the second most common is county roads. And the median age
of drivers there was quite low at 36.

Let’s break this down one more step. What if we added RUR_URB – if the accident happened
in rural or urban place. A common feeling in a rural state like Nebraska is that urban interstate
is a ribbon of insanity. But is it?

personaccidents |>
filter(PER_TYP == 1) |>
filter(INJ_SEV == 4) |>
group_by(RUR_URB, ROUTE) |>
summarize(

count = n(),
avgage = mean(AGE),
medage = median(AGE))

`summarise()` has grouped output by 'RUR_URB'. You can override using the
`.groups` argument.

# A tibble: 8 x 5
# Groups: RUR_URB [2]
RUR_URB ROUTE count avgage medage

<dbl> <dbl> <int> <dbl> <dbl>
1 1 1 12 45.3 42.5
2 1 2 41 52.5 51
3 1 3 27 41.9 42
4 1 4 37 37.3 36
5 2 1 3 21.3 21
6 2 2 10 55.3 54.5
7 2 3 4 45 35
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8 2 6 18 40.4 35

In 2018, only 3 of the 15 deaths on interestates were in urban areas. All the rest were in rural
areas. And all 37 drivers who died in accidents on county roads were in rural areas. Most of
the driver deaths on US Highways were in rural places as well.
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15 Scraping data with Rvest

Sometimes, governments put data online on a page or in a searchable database. And when you
ask them for a copy of the data underneath the website, they say no. Why? Because they have
a website. That’s it. That’s their reason. We don’t have to give you the data because we’ve
already given you the data, never mind that they haven’t. One of the most powerful tools you
can learn as a data journalist is how to scrape data. Scraping is the process of programming a
computer to act like a browser, go to a website, injest the HTML from that website and turn
it into data.

The degree of difficulty here goes from Easy to So Hard You Want To Throw Your Laptop
Out A Window. And the curve between the two steep. You can learn how to scrape Easy in
a day. The hard ones take months to years of programming experience.

So.

Let’s try an easy one.

We’re going to use a library called rvest, which you can install it the same way we’ve done
all installs: go to the console and install.packages("rvest").

We’ll load them first:

library(rvest)
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x readr::guess_encoding() masks rvest::guess_encoding()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
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The first thing we need to do is define a URL. What URL are we going to scrape? This is
where paying attention to URLs pays off. Some search urls are addressable – meaning you can
copy the url of your search and go to it again and again. Or is the search term invisible?

Let’s take an example from the Nebraska Legislature. The Legislature publishes a daily agenda
that tells you what bills will be debated on the floor that day. Here’s an example from Feb. 3.
Go that page. You’ll see multiple sections – a reports section, and the General File section.
General File is the first stage of floor debate. Those are the bills to be debated.

Let’s grab them with rvest.

First, we create a url variable and set it equal to that url.

url <- "https://nebraskalegislature.gov/calendar/agenda.php?day=2020-02-03"

Now we’re going to do a handful of things at once. We’re going to take that url, pass it to
a read_html command, which does what you think it does. We’re then going to search that
HTML for a specific node, the node that contains our data.

The most difficult part of scraping data from any website is knowing what exact HTML tag
you need to grab. In this case, we want a <table> tag that has all of our data table in it. But
how do you tell R which one that is? Well, it’s easy, once you know what to do. But it’s not
simple. So I’ve made a short video to show you how to find it.

Using that same trick on the Legislature page, we find the table with those general file bills
and it’s in something called agenda_table_4464. With that, we can turn it into a table.

agenda <- url |>
read_html() |>
html_nodes(xpath = '//*[@id="agenda_table_4464"]') |>
html_table()

After doing that, looking at the environment for your agenda. And you’ll see … not a dataframe.
You’ll see a list. With one thing in it. That one thing? A dataframe. So we need to grab that
first element. We get it by doing this:

agenda <- agenda[[1]]

And now we can take a look:

agenda

# A tibble: 10 x 3
Document Introducer Description
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<chr> <chr> <chr>
1 "Currently or Pendingon Floor\n ~ Bolz Provide a ~
2 "Currently or Pendingon Floor\n ~ Kolterman Adopt the ~
3 "Currently or Pendingon Floor\n ~ Kolterman Appropriat~
4 "Currently or Pendingon Floor\n ~ Bolz Change eli~
5 "Currently or Pendingon Floor\n ~ Kolterman Change pro~
6 "Currently or Pendingon Floor\n ~ Kolterman Appropriat~
7 "Currently or Pendingon Floor\n ~ Dorn Change pro~
8 "Currently or Pendingon Floor\n ~ Wishart Change pro~
9 "Currently or Pendingon Floor\n ~ McDonnell Change pro~
10 "Currently or Pendingon Floor\n ~ Vargas Change pro~

And as you can see, it’s … not perfect. But we can fix that with a little gsub magic.

agenda |> mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document))

# A tibble: 10 x 3
Document Introducer Description
<chr> <chr> <chr>

1 " ~ Bolz Provide a ~
2 " ~ Kolterman Adopt the ~
3 " ~ Kolterman Appropriat~
4 " ~ Bolz Change eli~
5 " ~ Kolterman Change pro~
6 " ~ Kolterman Appropriat~
7 " ~ Dorn Change pro~
8 " ~ Wishart Change pro~
9 " ~ McDonnell Change pro~
10 " ~ Vargas Change pro~

15.1 A more difficult example

The Nebraska Legislature, with it’s unique unicameral or one house structure, does some things
a little differently than other legislatures. Example: Bills have to go through three rounds of
debate before getting passed. There’s General File (round 1), Select File (round 2), and Final
Reading (round 3).

So what does a day where they do more than general file look like? Like this.

How do we scrape that?
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harderurl <- "https://nebraskalegislature.gov/calendar/agenda.php?day=2020-02-21"

harderagenda <- harderurl |>
read_html() |>
html_nodes("table") |>
html_table()

You can see that harderagenda has a list of four instead of a list of one. We can see each item
in the list has a dataframe. We can see them individually. Here’s the first:

harderagenda[[1]]

# A tibble: 4 x 3
Document Introducer Description
<chr> <chr> <chr>

1 "Currently or Pendingon Floor\n ~ Kolterman Define the~
2 "Currently or Pendingon Floor\n ~ Geist Change and~
3 "Currently or Pendingon Floor\n ~ Chambers Change pro~
4 "Currently or Pendingon Floor\n ~ Gragert Provide fo~

Here’s the second:

harderagenda[[2]]

# A tibble: 4 x 3
Document Introducer Description
<chr> <chr> <chr>

1 "Currently or Pendingon Floor\n ~ Crawford Change the~
2 "Currently or Pendingon Floor\n ~ Lindstrom Change pro~
3 "Currently or Pendingon Floor\n ~ Quick Change the~
4 "Currently or Pendingon Floor\n ~ Hunt Adopt the ~

So we can merge those together no problem, but how would we know what stage each bill is
at?

Look at the page – we can see that the bills are separated by a big headline like “SELECT
FILE: 2020 PRIORITY BILLS”. To separate these, we need to grab those and then add them
to each bill using mutate.

Here’s how we grab them:
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labels <- harderurl |>
read_html() |>
html_nodes(".card-header") |>
html_text()

Another list. If you look at the first, it’s at the top of the page with no bills. Here’s the
second:

labels[[2]]

[1] "\n SELECT FILE: 2020 PRIORITY BILLS\n "

So we know can see there’s some garbage in there we want to clean out. We can use a new
library called stringr to trim the excess spaces and gsub to strip the newline character: \n.

harderagenda[[1]] |>
mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document)) |>
mutate(Stage = labels[[2]]) |>
mutate(Stage = gsub("\n","",Stage)) |>
mutate(Stage = str_trim(Stage, side = "both"))

# A tibble: 4 x 4
Document Introducer Description Stage
<chr> <chr> <chr> <chr>

1 " ~ Kolterman Define the~ SELE~
2 " ~ Geist Change and~ SELE~
3 " ~ Chambers Change pro~ SELE~
4 " ~ Gragert Provide fo~ SELE~

Now it’s just a matter grinding through the items in the list.

NOTE: This is grossly inefficient and very manual. And, we’d have to change this for every
day we want to scrape. As such, this is not the “right” way to do this. We’ll cover that in the
next chapter.

harderagenda1 <- harderagenda[[1]] |>
mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document)) |>
mutate(Stage = labels[[2]]) |> mutate(Stage = gsub("\n","",Stage)) |>
mutate(Stage = str_trim(Stage, side = "both"))
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harderagenda2 <- harderagenda[[2]] |>
mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document)) |>
mutate(Stage = labels[[3]]) |> mutate(Stage = gsub("\n","",Stage)) |>
mutate(Stage = str_trim(Stage, side = "both"))

harderagenda3 <- harderagenda[[3]] |>
mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document)) |>
mutate(Stage = labels[[4]]) |> mutate(Stage = gsub("\n","",Stage)) |>
mutate(Stage = str_trim(Stage, side = "both"))

harderagenda4 <- harderagenda[[4]] |>
mutate(Document = gsub("Currently or Pendingon Floor\n ","",Document)) |>
mutate(Stage = labels[[5]]) |> mutate(Stage = gsub("\n","",Stage)) |>
mutate(Stage = str_trim(Stage, side = "both"))

Now we merge:

largeragenda <- rbind(harderagenda1, harderagenda2)
largeragenda <- rbind(largeragenda, harderagenda3)
largeragenda <- rbind(largeragenda, harderagenda4)

And now we have a dataset of all bills and what stage they’re at for that day.

largeragenda

# A tibble: 10 x 4
Document Introducer Description Stage
<chr> <chr> <chr> <chr>

1 " ~ Kolterman Define the~ "SEL~
2 " ~ Geist Change and~ "SEL~
3 " ~ Chambers Change pro~ "SEL~
4 " ~ Gragert Provide fo~ "SEL~
5 " ~ Crawford Change the~ "GEN~
6 " ~ Lindstrom Change pro~ "GEN~
7 " ~ Quick Change the~ "GEN~
8 " ~ Hunt Adopt the ~ "GEN~
9 " ~ Agricultu~ Adopt the ~ "GEN~
10 " ~ Howard Congratula~ "LEG~
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16 Advanced rvest

Continuing a discussion from the last chapter, this is an example of when it goes from Easy
to Moderately Difficult.

In the last exercise, we scraped bills out of one day of floor activity in the Nebraska Legislature.
What if we wanted all of them? Let’s say we wanted to keep a running scoreboard of who has
introduced the most bills that have seen the floor?

Here’s how to use some programming knowledge with R to grab all days and merge them
together. First we start with libraries, as we always do.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(rvest)

Attaching package: 'rvest'

The following object is masked from 'package:readr':

guess_encoding
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Now we’ll start the trickery. So we need to know what days the legislature is in session.
Fortunately, the legislature tells us that in a drop down menu. Inspect the dropdown menu of
this page. See the list?

If it’s HTML in the page, we can grab it, so let’s do that. We start with the URL to any day,
really.

url <- "https://nebraskalegislature.gov/calendar/dayview.php?day=2020-02-03"

I’m going to create a thing called a calendar and store the list of option values in there. So
when I’m done, I’ll have a list of dates.

calendar <- url |>
read_html() |>
html_nodes(xpath = '//*[@id="leg_day"]') |>
html_nodes("option") |>
html_attrs()

calendar[1][1]
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[[1]]
NULL

Now this part gets tough, but if you follow, it’s logical. It’s step by step, really.

First, I noticed at the top of the agenda pages is a link to the daily agenda in csv format.
Convenient, that.

If you look at that url, it looks like this:

https://nebraskalegislature.gov/calendar/agenda.php?day=2020-01-14&print=csv

If we can change the date in that url to each day of the session, we’d get a csv file for each
day of the session that we can merge together.

Let’s break down the steps to do that.

1. I need a place to store this. A lazy way? Just import a day, filter everything out of it,
and I’ve got an empty table I can rbind stuff into.

2. I need to set up a loop. For each day in the calendar, do some stuff.
3. I need to clean out the word selected (an HTML thing) from one of the dates.
4. I need to just scrape days that have business pending on the floor. So I can skip the first

few days and I can skip any days into the future.
5. I need to take my date from calendar and add them to the url. Then I need to take that

agenda url and add the csv parts.
6. Then I can use read_csv like we have been to read the CSV url directly.
7. Then I just rbind my new csv to the one I created.
8. This isn’t going to work perfectly every time, so I’m going to add some tryCatch state-

ments that say try this, and if it doesn’t work, do nothing.

102



9. Then, because I’m a decent fellow, I’m going to pause my query for three seconds to give
their servers a break.

Let’s run it.

allbills <- read_csv("https://nebraskalegislature.gov/calendar/agenda.php?day=2020-01-14&print=csv", col_types = cols()) |> mutate(Date = as.Date("2020-01-01"))|> filter(`Section Header` == "Blah")

for (i in calendar){
date <- i[1]
checkdate <- as.Date(date)

if (checkdate <= Sys.Date() & checkdate > as.Date("2020-01-13")) {

agendaurl <- paste("https://nebraskalegislature.gov/calendar/agenda.php?day=", i, sep="")
csvurl <-paste(agendaurl, "&print=csv", sep="")

tryCatch(
agenda <- read_csv(csvurl, col_types = cols()) |> mutate(Date = checkdate),
error = function(e){NA})

tryCatch(
allbills <- rbind(allbills, agenda),
error = function(e){NA})

Sys.sleep(3)
}

}

And after that, I have a dataset of entries of bills on the floor. So if I want to see who has had
the most bills on the floor – including repeats – I could answer that now.

allbills |> group_by(Introducer) |> tally(sort=TRUE) |> na.omit() |> top_n(5)

Selecting by n

# A tibble: 0 x 2
# i 2 variables: Introducer <chr>, n <int>

Senator Kolterman, collect your prize.

A note about advanced scraping – every site is different. Every time you want to scrape a
site, you’ll be puzzling over different problems. But the steps remain the same: find a pattern,
exploit it, clean the data on the fly and put it into a place to store it.
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17 Visualizing your data for reporting

Visualizing data is becoming a much greater part of journalism. Large news organizations
are creating graphics desks that create complex visuals with data to inform the public about
important events.

To do it well is a course on it’s own. And not every story needs a feat of programming and
art. Sometimes, you can help yourself and your story by just creating a quick chart.

Good news: one of the best libraries for visualizing data is in the tidyverse and it’s pretty
simple to make simple charts quickly with just a little bit of code.

Let’s revisit some data we’ve used in the past and turn it into charts.

library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.2 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.4 v tibble 3.2.1
v lubridate 1.9.2 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

The dataset we’ll use is the mountainlion data we looked at in Chapter 6.

mountainlions <- read_csv("data/mountainlions.csv")

Rows: 393 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (3): Cofirm Type, COUNTY, Date
dbl (1): ID
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i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

17.1 Bar charts

The first kind of chart we’ll create is a simple bar chart. It’s a chart designed to show differences
between things – the magnitude of one, compared to the next, and the next, and the next. So
if we have thing, like a county, or a state, or a group name, and then a count of that group,
we can make a bar chart.

So what does the chart of the top 10 counties with the most mountain sightings look like?

First, we’ll create a dataframe of those top 10, called topsightings.

mountainlions |>
group_by(COUNTY) |>
summarise(

total = n()
) |> top_n(10, total) -> topsightings

Now ggplot. The first thing we do with ggplot is invoke it, which creates the canvas. In ggplot,
we work with geometries – the shape that the data will take – and aesthetics – the data that
will take shape. In a bar chart, we first pass in the data to the geometry, then set the aesthetic.
We tell ggplot what the x value is – in a bar chart, that’s almost always your grouping variable.
Then we tell it the weight of the bar – the number that will set the height.

ggplot() + geom_bar(data=topsightings, aes(x=COUNTY, weight=total))

105



0

30

60

90

Brown Cherry Custer DawesKeya PahaKnox Lincoln RockScotts BluffSheridan Sioux
COUNTY

co
un

t

The bars look good, but he order makes no sense. In ggplot, we use reorder, and we reorder
the x value based on the weight, like this:

ggplot() + geom_bar(data=topsightings, aes(x=reorder(COUNTY, total), weight=total))
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Better, but it looks … not great on the bottom. We can fix that by flipping the coordinates.

ggplot() + geom_bar(data=topsightings, aes(x=reorder(COUNTY, total), weight=total)) + coord_flip()
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Art? No. Tells you the story? Yep. And for reporting purposes, that’s enough.

17.2 Line charts

Line charts show change over time. It works the much the same as a bar chart, code wise, but
instead of a weight, it uses a y. And if you have more than one group in your data, it takes a
group element.

The secret to knowing if you have a line chart is if you have a date. The secret to making a
line chart is your x value is almost always a date.

To make this easier, I’ve created a new version of the county population estimates data that
it formatted for charting. Let’s import it:

populationestimates <- read_csv("data/countypopulationslong.csv")

Rows: 28278 Columns: 6
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (4): STNAME, CTYNAME, Year, Name
dbl (1): Population
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date (1): Date

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

As you can see, I’ve switched the data from the years going wide to the right to each line being
one county, one year. And, I’ve added a date column, which is the estimates date.

Now, if we tried to make a line chart of all 3,142 counties, we’d get a mess. But, it’s the first
mistake people make in creating a line chart, so let’s do that.

ggplot() + geom_line(data=populationestimates, aes(x=Date, y=Population, group=Name))
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And what do we learn from this? There’s one very, very big county, some less big counties,
and a ton of smaller counties. So many we can’t see Them, and because the numbers are so
big, any changes are dwarfed.

So let’s thin the herd here. How about we just look at Lancaster County, Nebraska.

lancaster <- populationestimates |> filter(Name == "Lancaster County, Nebraska")

Now let’s chart it.
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ggplot() + geom_line(data=lancaster, aes(x=Date, y=Population, group=Name))
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Growing like gangbusters, right? Well, not exactly. Note the y axis doesn’t start at 0.

ggplot() + geom_line(data=lancaster, aes(x=Date, y=Population, group=Name)) + scale_y_continuous(limits = c(0, 320000))
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More accurate.

But how does that compare to Omaha? Geoms work in layers. We can just add Omaha. First,
we need a dataframe with Douglas County in it.

douglas <- populationestimates |> filter(Name == "Douglas County, Nebraska")

With that, we just add another geom_line. We will also need to adjust our y axis limits to
expand to fit Omaha.

ggplot() + geom_line(data=lancaster, aes(x=Date, y=Population, group=Name)) + geom_line(data=douglas, aes(x=Date, y=Population, group=Name)) + scale_y_continuous(limits = c(0, 650000))
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So both counties are growing, but from the line we can see that Omaha is growing just ever
so slightly faster. No accounting for taste.
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18 Writing with numbers

The number one sin of all early career data journalist is to get really, really, really attached to
the analysis you’ve done and include every number you find.

Don’t do that.

Numbers tell you what. Numbers rarely tell you why. What question has driven most people
since they were three years old? Why. The very first thing to do is realize that is the purpose
of reporting. You’ve done the analysis to determine the what. Now go do the reporting to do
the why. Or as an old editor of mine used to say “Now go do that reporting shit you do.”

The trick to writing a numbers story is to frame your story around people. Sometimes, your
lead can be a number, if that number is compelling. Often, your lead is a person, a person
who is one of the numbers you are writing about.

Tell their story. Briefly. Then, let us hear from them. Let them speak about what it is you
are writing about.

Then come the numbers.

18.1 How to write about numbers without overwhelming with
numbers.

Writing complex stories is often a battle against that complexity. You don’t want to overwhelm.
You want to simplify where you can. The first place you can do that is only use exact numbers
where an exact number is called for.

Where you can, do the following:

• Using ratios instead of percents
• Often, it’s better to put it in counts of 10. 6 of 10, 4 of 10. It’s easy to translate that

from a percentage to a ratio.
• But be careful when your number is 45 percent. Is that 4 in 10 or 5 in 10?
• If a ratio doesn’t make sense, round. There’s 287,401 people in Lincoln, according to

the Census Bureau. It’s easier, and no less accurate, to say there’s more than 287,000
people in Lincoln.
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A critical question your writing should answer: As compared to what?

How does this compare to the average? The state? The nation? The top? The bottom?

One of the most damning numbers in the series of stories Craig Pittman and I wrote that
became the book Paving Paradise was comparing approvals and denials.

We were looking at the US Army Corps of Engineers and their permitting program. We were
able to get a dataset of just a few years of permits that was relatively clean. From that, we
were able to count the number of times the corps had said yes to a developer to wipe out
wetlands the law protected and how many times they said no.

They said yes 12,000 times. They said no once.

That one time? Someone wanted to build an eco-lodge in the Everglades. Literally. Almost
every acre of the property was wetlands. So in order to build it, the developer would have to
fill in the very thing they were going to try to bring people into. The corps said no.

18.2 When exact numbers matter

Sometimes ratios and rounding are not appropriate.

This is being written in the days of the coronavirus. Case counts are where an exact number
is called for. You don’t say that there are more than 70 cases in Lancaster County on the day
this was written. You specify. It’s 75.

You don’t say almost 30 deaths. It’s 28.

Where this also comes into play is any time there are deaths: Do not round bodies.

18.3 An example

Read this story from USA Today and the Arizona Republic. Notice first that the top sets up
a conflict: People say one thing, and that thing is not true.

No one could have anticipated such a catastrophe, people said. The fire’s speed
was unprecedented, the ferocity unimaginable, the devastation unpredictable.

Those declarations were simply untrue. Though the toll may be impossible to
predict, worst-case fires are a historic and inevitable fact.

The first voice you hear? An expert who studies wildfires.
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Phillip Levin, a researcher at the University of Washington and lead scientist for
the Nature Conservancy in Washington, puts it this way: “Fire is natural. But the
disaster happens because people didn’t know to leave, or couldn’t leave. It didn’t
have to happen.”

Then notice how they take what is a complex analysis using geographic information systems,
raster analysis, the merging of multiple different datasets together and show that it’s quite
simple – the averaging together of pixels on a 1-5 scale.

Then, the compare what they found to a truly massive fire: The Paradise fire that burned
19,000 structures.

Across the West, 526 small communities — more than 10 percent of all places —
rank higher.

And that is how it’s done. Simplify, round, ratios: simple metrics, powerful results.
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19 Ethics in data journalism

This originally appeared on Open News in March 2013.

In 2009, a senior web editor asked me and another developer a question: could our development
group build a new news application for Tampabay.com that displayed a gallery of mug shots?
Stories about goofy crimes with strange mug shots were popular with readers. The vision,
on the part of management, was a website that would display the mugshots collected every
day from publicly available websites by two editors—well paid, professional editors with other
responsibilities.

Newsrooms are many things. Alive. Filled with energy. Fueled by stress, coffee and profanity.
But they are also idea factories. Day after day, ideas come from everywhere. From reporters
on the beat. From editors reading random things. From who knows where. Some of them are
brilliant. Some would never work. Most need more people and time than are available. And
some are dumber than anyone cares to admit.

We thought this idea was nuts. Why would we pay someone, let alone an editor, to fetch mug
shots from the Internet? Couldn’t we do that with a scraper?

If only this were the most complex question we would face.

Because given enough time and enough creativity, scraping a mug shot website is easy. You
need to recognize a pattern, parse some HTML and gather the pieces you need. At least
that’s how it should work. Police agencies that put mugs online usually buy software from a
vendor. Apparently, those vendors enjoy making horrific, non-standard, broken-in-interesting-
and-unique-ways HTML. You’ll swear. A lot. But you’ll grind it out. And that’s part of
the fun. Scraping isn’t any fun with clean, semantic, valid HTML. And scraping mug shot
websites, by that definition, is tons of fun.

The complexity comes when you realize the data you are dealing with represent real people’s
lives.

19.1 Problems

The first problem we faced, long before we actually had data, was that data has a life of its own.
Because we were going to put this information in front of a big audience, Google was going to
find it. That meant if we used our normal open door policy for the Googlebot, someone’s mug
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shot was going to be the first record in Google for their name, most likely. It would show up
first because most people dont actively cultivate their name on the web for visibility in Google.
It would show up first because we know how SEO works and they dont. It would show up
first because our site would have more traffic than their site, and so Google would rank us
higher.

And that record in Google would exist as long as the URL did. Longer when you consider the
cached versions Google keeps.

That was a problem because here are the things we could not know:

• Was this person wrongly arrested?
• Was this person innocent?
• Were the charges dropped against this person?
• Did this person lie about any of their information?

19.2 The Googlebot

So it turned out to be very important to know the Googlebot. It’s your friend … until it isn’t.
We went to our bosses and said words that no one had said to them before: we did not want
Google to index these pages. In a news organization, the page view is the coin of the realm. It
is — unfortunately — how many things are evaluated when the bosses ask if it was successful
or not. So, with that in mind, Google is your friend. Google brings you traffic. Indeed, Google
is your single largest referrer of traffic at a news organization, so you want to throw the doors
open and make friends with the Googlebot.

But here we were, saying Google wasn’t our friend and that we needed to keep the Googlebot
out. And, thankfully, our bosses listened to our argument. They too didn’t want to be the
first result in Google for someone.

So, to make sure we were telling the Googlebot no, we used three lines of defense. We told it
no in robots.txt and on individual pages as a meta tag, and we put the most interesting bits
of data into a simple JavaScript wrapper that made it hard on the bot if the first two things
failed.

The second solution had ramifications beyond the Googlebot. We decided that we were not
trying to make a complete copy of the public record. That existed already. If you wanted to
look at the actual public records, the sheriff’s offices in the area had websites and they were
the official keeper of the record. We were making browsing those images easy, but we were not
the public record.

That freedom had two consequences: it meant our scrapers could, at a certain point and given
a number of failures, just give up on getting a mug. Data entered by humans will be flawed.
There will be mistakes. Because of that, our code would have to try and deal with that. Well,
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there’s an infinite number of ways people can mess things up, so we decided that since we
were not going to be an exact copy of the public record, we could deal with the most common
failures and dump the rest. During testing, we were getting well over 98% of mugs without
having to spend our lives coding for every possible variation of typo.

The second consequence of the decision actually came from the newspapers lawyers. They
asked a question that dumbfounded us: How long are you keeping mugs? We never thought
about it. Storage was cheap. We just assumed we’d keep them all. But, why should we do
that? If we’re not a copy of the public record, we dont have to keep them. And, since we didnt
know the result of each case, keeping them was really kind of pointless.

So, we asked around: How long does a misdemeanor case take to reach a judgement? The
answer we got from various sources was about 60 days. From arrest to adjudication, it took
about two months. So, at the 60 day mark, we deleted the data. We had no way of knowing
if someone was guilty or innocent, so all of them had to go. We even called the script The
Reaper.

We’d later learn that the practical impacts of this were nil. People looked at the day’s mugs
and moved on. The amount of traffic a mug got after the day of arrest was nearly zero.

19.3 Data Lifetimes

The life of your data matters. You have to ask yourself, Is it useful forever? Does it become
harmful after a set time? We had to confront the real impact of deleting mugs after 60
days. People share them, potentially lengthening their lifetime long after they’ve fallen off the
homepage. Delete them and that URL goes away.

We couldn’t stop people from sharing links on social media—and indeed probably didn’t want
to stop them from doing it. Heck, we did it while we were building it. We kept IMing URLs
to each other. And that’s how we realized we had a problem. All our work to minimize the
impact on someone wrongly accused of a crime could be damaged by someone sharing a link
on Facebook or Twitter.

There’s a difference between frictionless and unobstructed sharing and some reasonable con-
straints.

We couldn’t stop people from posting a mug on Facebook, but we didn’t have to make it easy
and we didn’t have to put that mug front and center. So we blocked Facebook from using the
mug as the thumbnail image on a shared link. And, after 60 days, the URL to the mug will
throw a 404 page not found error. Because it’s gone.

We couldn’t block Google from memorializing someone’s arrest, only to let it live on forever
on Facebook.
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19.4 You Are a Data Provider

The last problem didn’t come until months later. And it came in the middle of the night. Two
months after we launched, my phone rang at 1 a.m. This is never a good thing. It was my
fellow developer, Jeremy Bowers, now with NPR, calling me from a hotel in Washington DC
where he was supposed to appear in a wedding the next day. Amazon, which we were using
for image hosting, was alerting him that our bandwidth bills had tripled on that day. And our
traffic hadn’t changed.

What was going on?

After some digging, we found out that another developer had scraped our site—because we
were so much easier to scrape than the Sheriff’s office sites—and had built a game out of our
data called Pick the Perp. There were two problems with this: 1. The game was going viral
on Digg (when it was still a thing) and Reddit. It was getting huge traffic. 2. That developer
had hotlinked our images. He/she was serving them from our S3 account, which meant we
were bearing the costs. And they were going up exponentially by the minute.

What we didn’t realize when we launched, and what we figured out after Pick the Perp, was
that we had become data provider, in a sense. We had done the hard work of getting the data
out of a website and we put it into neat, semantic, easily digestible HTML. If you were after
a stream of mugshots, why go through all the hassle of scraping four different sheriff’s office’s
horrible HTML when you could just come get ours easily?

Whoever built Pick the Perp, at least at the time, chose to use our site. But, in doing so, they
also chose to hotlink images—use the URL of our S3 bucket, which cost us money—instead of
hosting the images themselves.

That was a problem we hadn’t considered. People hotlink images all the time. And, until
those images are deleted from our system, they’ll stay hotlinked somewhere.

Amazon’s S3 has a system where you can attach a key to a file that expires after X period of
time. In other words, the URL to your image only lasts 15 minutes, or an hour, or however
long you decide, before it breaks. It gives you fine grained control over how long someone can
use your image URL.

So at 3 a.m., after two hours of pulling our hair out, we figured out how to sync our image
keys with our cache refreshes. So every 15 minutes, a url to an image expired and Pick the
Perp came crashing down.

While the Pick the Perp example is an easy one—it’s never cool to hotlink an image—it does
raise an issue to consider. Because you are thinking carefully about how to build your app
the right way doesn’t mean someone else will. And it doesn’t mean they won’t just go take
your data from your site. So how could you deal with that? Make the data available as a
download? Create an API that uses your same ethical constructs? Terms of service? All have
pros and cons and are worth talking about before going forward.
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19.5 Ethical Data

We live in marvelous times. The web offers you no end of tools to make things on the web, to
put data from here on there, to make information freely available. But, we’re an optimistic lot.
Developers want to believe that their software is being used only for good. And most people
will use it for good. But, there are times where the data you’re working with makes people
uncomfortable. Indeed, much of journalism is about making people uncomfortable, publishing
things that make people angry, or expose people who don’t want to be exposed.

What I want you to think about, before you write a line of code, is what does it mean to put
your data on the internet? What could happen, good and bad? What should you do to be
responsible about it?

Because it can have consequences.

On Dec. 23, the Journal News in New York published a map of every legal gun permit holder
in their home circulation county. It was a public record. They put it into Google Fusion
Tables and Google dutifully geocoded the addresses. It was a short distance to publication
from there.

Within days, angry gun owners had besieged the newspaper with complaints, saying the paper
had given criminals directions to people’s houses where they’d find valuable guns to steal.
They said the paper had violated their privacy. One outraged gun owner assembled a list
of the paper’s staff, including their home addresses, telephone numbers, email addresses and
other details. The paper hired armed security to stand watch at the paper.

By February, the New York state legislature removed handgun permits from the public record,
citing the Journal News as the reason.

There’s no end of arguments to be had about this, but the simple fact is this: The reason
people were angry was because you could click on a dot on the map and see a name and an
address. In Fusion Tables, removing that info window would take two clicks.

Because you can put data on the web does not mean you should put data on the web. And
there’s a difference between a record being “public” and “in front of a large audience.”

So before you write the first line of code, ask these questions:

• This data is public, but is it widely available? And does making it widely available and
easy to use change anything?

• Should this data be searchable in a search engine?
• Does this data expose information someone has a reasonable expectation that it would

remain at least semi-private?
• Does this data change over time?
• Does this data expire?
• What is my strategy to update or delete data?
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• How easy should it be to share this data on social media?
• How should I deal with other people who want this data? API? Bulk download?

Your answers to these questions will guide how you build your app. And hopefully, it’ll guide
you to better decisions about how to build an app with ethics in mind.
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20 Installations

You’re going to do things most of you aren’t used to doing with your computer in this class.
In order to do that, you need to clean up your computer. I’ve seen what your computer looks
like. It’s disgusting.

20.1 Part 1: Update and patch your operating system

On a Mac:

1. Open System Preferences.

Depending on how old your Mac OS is, you might see this:
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Or you might see this:

123



2. Check and see if you have the latest version of the Mac OS installed. If your computer
says “Your Mac is up to date”, then you’re good to go, regardless of what comes next.

3. If you aren’t on Sonoma and you can update to it, you should do it. This will take some
time – hours, so don’t do it when you need your laptop – but it’s important for you and
your computer to stay up to date on operating systems.

4. When you’re done, make sure you click the Automatically keep my Mac up to date
box and install those updates regularly. Don’t ignore them. Don’t snooze them.
Install them.

5. With an up-to-date operating system, now install the command line tools. To do this,
click on the magnifying glass in the top right of the screen and type terminal. Hit enter
– the first entry is the terminal app.

6. In the terminal app, type xcode-select --install and hit enter. Let it run.
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On Windows:

1. Type Updates into the Cortana search then click Check for updates
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2. After the search for updates completes, apply any that you have. Depending on if you’d
done this recently or if you have automatic updates set, this might take a long time or
go very quickly.
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3. When you’re done, make sure you set up automatic updates for your Windows machine
and install those updates regularly. Don’t ignore them. Don’t snooze them. Install
them.

20.2 Part 2: Install R and R Studio

1. Go here. Go to Step 1 and click Download and Install R

• If you’re on a Mac, click on Download R for MacOS. If you have a newer Mac with
an M1/M2/M3 chip, you want the arm64 version. If you’re on an older Mac with
an Intel chip, you want the X86_64 version.

• If you’re on Windows, install the base package AND install Rtools. When either
downloads, run the executable and accept the defaults and license agreement.
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2. Go back to here. Go to Step 2 and click R Studio Desktop for your version.

Mac users:

Figure 20.1: Make sure you drag the R Studio icon into the Applications folder icon.

Windows users:

You can find it by typing RStudio into the Cortana search.
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20.3 Part 3: Installing R libraries

1. Open R Studio. It should show the Console view by default. We’ll talk a lot more about
the console later.

2. Copy and paste this into the console and hit enter:

install.packages(c("tidyverse", "rmarkdown", "lubridate", "janitor", "learnr",
"remotes", "devtools", "waffle", "ggrepel", "ggbeeswarm", "ggbump", "ggalt",
"ggtext", "rvest"))
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20.4 Part 4: Install Slack

1. Install Slack on your computer and your phone (you can find Slack in whatever app
store you use). The reason I want it on both is because you are going to ask me for help
with code via Slack. Do not use screenshots unless specifically asked. I want you
to copy and paste your code. You can’t do that on a phone. So you need the desktop
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version. But I can usually solve your problem within a few minutes if you respond right
away, and I know that you have your phone on you and are checking it. So the desktop
version is for work, the phone version is for notifications.

2. Email me the address you want connected to Slack. Use one you’ll actually check.
3. When you get the Slack invitation email, log in to the class slack via the apps, not the

website.
4. Add the #r channel for general help I’ll send to everyone in the channel and, if you want,

the #jobstuff channel for news about jobs I come across.

20.5 Part 5: Install the tutorials

To get the tutorials, do the following.
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1. Open R Studio.

2. R Studio defaults to the console view. This is good, This is where you want to be.

3. In the console, enter the following:
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devtools::install_github("mattwaite/DataJournalismTutorials", force=TRUE)

4. You should see some automated output. If you are told there are newer libraries and asked
if you want to install them, just hit enter. When it is done, quit R Studio and restart it.

This is what it will look like when done.
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